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Abstract

Tasks like code generation and semantic
parsing require mapping unstructured (or
partially structured) inputs to well-formed,
executable outputs. We introduce ab-
stract syntax networks, a modeling frame-
work for these problems. The outputs
are represented as abstract syntax trees
(ASTs) and constructed by a decoder with
a dynamically-determined modular struc-
ture paralleling the structure of the output
tree. On the benchmark HEARTHSTONE
dataset for code generation, our model ob-
tains 79.2 BLEU and 22.7% exact match
accuracy, compared to previous state-of-
the-art values of 67.1 and 6.1%. Further-
more, we perform competitively on the
ATIS, JOBS, and GEO semantic parsing
datasets with no task-specific engineering.

1 Introduction

Tasks like semantic parsing and code generation
are challenging in part because they are struc-
tured (the output must be well-formed) but not
synchronous (the output structure diverges from
the input structure).

Sequence-to-sequence models have proven ef-
fective for both tasks (Dong and Lapata, 2016;
Ling et al., 2016), using encoder-decoder frame-
works to exploit the sequential structure on both
the input and output side. Yet these approaches
do not account for much richer structural con-
straints on outputs—including well-formedness,
well-typedness, and executability. The well-
formedness case is of particular interest, since it
can readily be enforced by representing outputs as
abstract syntax trees (ASTs) (Aho et al., 2006), an
approach that can be seen as a much lighter weight

⇤Equal contribution.

name: [
'D', 'i', 'r', 'e', ' ',
'W', 'o', 'l', 'f', ' ',
'A', 'l', 'p', 'h', 'a']

cost: ['2']
type: ['Minion']
rarity: ['Common']
race: ['Beast']
class: ['Neutral']
description: [

'Adjacent', 'minions', 'have',
'+', '1', 'Attack', '.']

health: ['2']
attack: ['2']
durability: ['-1']

class DireWolfAlpha(MinionCard):
def __init__(self):

super().__init__(
"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)

def create_minion(self, player):
return Minion(2, 2, auras=[
Aura(ChangeAttack(1), MinionSelector(Adjacent()))

])

Figure 1: Example code for the “Dire Wolf Alpha”
Hearthstone card.

show me the fare from ci0 to ci1

lambda $0 e
( exists $1 ( and ( from $1 ci0 )

( to $1 ci1 )
( = ( fare $1 ) $0 ) ) )

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and ci1 tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-

ar
X

iv
:1

70
4.

07
53

5v
1 

 [c
s.C

L]
  2

5 
A

pr
 2

01
7

Abstract Syntax Networks for Code Generation and Semantic Parsing

Maxim Rabinovich

⇤
Mitchell Stern

⇤
Dan Klein

Computer Science Division
University of California, Berkeley

{rabinovich,mitchell,klein}@cs.berkeley.edu

Abstract

Tasks like code generation and semantic
parsing require mapping unstructured (or
partially structured) inputs to well-formed,
executable outputs. We introduce ab-
stract syntax networks, a modeling frame-
work for these problems. The outputs
are represented as abstract syntax trees
(ASTs) and constructed by a decoder with
a dynamically-determined modular struc-
ture paralleling the structure of the output
tree. On the benchmark HEARTHSTONE
dataset for code generation, our model ob-
tains 79.2 BLEU and 22.7% exact match
accuracy, compared to previous state-of-
the-art values of 67.1 and 6.1%. Further-
more, we perform competitively on the
ATIS, JOBS, and GEO semantic parsing
datasets with no task-specific engineering.

1 Introduction

Tasks like semantic parsing and code generation
are challenging in part because they are struc-
tured (the output must be well-formed) but not
synchronous (the output structure diverges from
the input structure).

Sequence-to-sequence models have proven ef-
fective for both tasks (Dong and Lapata, 2016;
Ling et al., 2016), using encoder-decoder frame-
works to exploit the sequential structure on both
the input and output side. Yet these approaches
do not account for much richer structural con-
straints on outputs—including well-formedness,
well-typedness, and executability. The well-
formedness case is of particular interest, since it
can readily be enforced by representing outputs as
abstract syntax trees (ASTs) (Aho et al., 2006), an
approach that can be seen as a much lighter weight

⇤Equal contribution.

name: [
'D', 'i', 'r', 'e', ' ',
'W', 'o', 'l', 'f', ' ',
'A', 'l', 'p', 'h', 'a']

cost: ['2']
type: ['Minion']
rarity: ['Common']
race: ['Beast']
class: ['Neutral']
description: [

'Adjacent', 'minions', 'have',
'+', '1', 'Attack', '.']

health: ['2']
attack: ['2']
durability: ['-1']

class DireWolfAlpha(MinionCard):
def __init__(self):

super().__init__(
"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)

def create_minion(self, player):
return Minion(2, 2, auras=[
Aura(ChangeAttack(1), MinionSelector(Adjacent()))

])

Figure 1: Example code for the “Dire Wolf Alpha”
Hearthstone card.

show me the fare from ci0 to ci1

lambda $0 e
( exists $1 ( and ( from $1 ci0 )

( to $1 ci1 )
( = ( fare $1 ) $0 ) ) )

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and ci1 tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-

ar
X

iv
:1

70
4.

07
53

5v
1 

 [c
s.C

L]
  2

5 
A

pr
 2

01
7

図は論文より引用



Abstract syntax networks

‣Abstract syntax tree (左) を生成する neural networks 

‣Top-down (vertical) LSTM +  
ノードに応じて LSTM の計算法が変化 (モジュール; 左) 

‣文法の仕様 (ASDL) によってモジュールが定まる
2
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FunctionDef FunctionDef

“DireWolfAlpha”
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identifier
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(a) The root portion of the AST.
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args

args args

func args

(b) Excerpt from the same AST, corresponding to the code snip-
pet Aura(ChangeAttack(1),MinionSelector(Adjacent())).

Figure 3: Fragments from the abstract syntax tree corresponding to the example code in Figure 1. Blue
boxes represent composite nodes, which expand via a constructor with a prescribed set of named children.
Orange boxes represent primitive nodes, with their corresponding values written underneath. Solid black
squares correspond to constructor fields with sequential cardinality, such as the body of a class
definition (Figure 3a) or the arguments of a function call (Figure 3b).

maintain recurrent state.

2 Data Representation

2.1 Abstract Syntax Trees

Our model makes use of the Abstract Syntax
Description Language (ASDL) framework (Wang
et al., 1997), which represents code fragments as
trees with typed nodes. Primitive types correspond
to atomic values, like integers or identifiers. Ac-
cordingly, primitive nodes are annotated with a
primitive type and a value of that type—for in-
stance, in Figure 3a, the identifier node stor-
ing "create minion" represents a function of
the same name.

Composite types correspond to language con-
structs, like expressions or statements. Each type
has a collection of constructors, each of which
specifies the particular language construct a node
of that type represents. Figure 4 shows con-
structors for the statement (stmt) and expression
(expr) types. The associated language constructs
include function and class definitions, return state-
ments, binary operations, and function calls.

Composite types enter syntax trees via compos-
ite nodes, annotated with a composite type and a
choice of constructor specifying how the node ex-
pands. The root node in Figure 3a, for example, is

1The full grammar can be found online on the
documentation page for the Python ast module:
https://docs.python.org/3/library/ast.
html#abstract-grammar

primitive types: identifier, object, ...

stmt
= FunctionDef(

identifier name, arg* args, stmt* body)
| ClassDef(

identifier name, expr* bases, stmt* body)
| Return(expr? value)
| ...

expr
= BinOp(expr left, operator op, expr right)
| Call(expr func, expr* args)
| Str(string s)
| Name(identifier id, expr_context ctx)
| ...

...

Figure 4: A simplified fragment of the Python
ASDL grammar.1

a composite node of type stmt that represents a
class definition and therefore uses the ClassDef
constructor. In Figure 3b, on the other hand, the
root uses the Call constructor because it repre-
sents a function call.

Children are specified by named and typed
fields of the constructor, which have cardinalities
of singular, optional, or sequential.
By default, fields have singular cardinality,
meaning they correspond to exactly one child.
For instance, the ClassDef constructor has a
singular name field of type identifier.
Fields of optional cardinality are associ-

Assign

...

stmt
ClassDef

Return

If

For

While If

(a) A composite type module choosing a constructor for
the corresponding type.

If
test

body

orelse

expr

stmt*

stmt*

(b) A constructor module computing updated vertical
LSTM states.

stmt*

stmt

(c) A constructor field module (sequential cardinal-
ity) generating children to populate the field. At each
step, the module decides whether to generate a child and
continue (white circle) or stop (black circle).

damage

...

identifier
__init__

create_minion

add_buff

change_attack
add_buff

(d) A primitive type module choosing a value from a
closed list.

Figure 5: The module classes constituting our decoder. For brevity, we omit the cardinality modules for
singular and optional cardinalities.

Constructor field modules Each field F of a
constructor has a corresponding module whose
role is to determine the number of children asso-
ciated with that field and to propagate an updated
vertical LSTM state to them. In the case of fields
with singular cardinality, the decision and up-
date are both vacuous, as exactly one child is al-
ways generated. Hence these modules forward the
field vertical LSTM state vu,F unchanged to the
child w corresponding to F:

vw = vu,F. (1)

Fields with optional cardinality can have either
zero or one children; this choice is made using a
feedforward network applied to the vertical LSTM
state:

p(zF = 1 | vu,F) = sigmoid (fgen

F (vu,F)) . (2)

If a child is to be generated, then as in (1), the state
is propagated forward without modification.

In the case of sequential fields, a horizon-
tal LSTM is employed for both child decisions and
state updates. We refer to Figure 5c for an illus-
tration of the recurrent process. After being ini-
tialized with a transformation of the vertical state,
sF,0 = WFvu,F, the horizontal LSTM iteratively

decides whether to generate another child by ap-
plying a modified form of (2):

p (zF,i = 1 | sF,i�1

, vu,F) =

sigmoid (fgen

F (sF,i�1

, vu,F)) .

If zF,i = 0, generation stops and the process ter-
minates, as represented by the solid black circle
in Figure 5c. Otherwise, the process continues as
represented by the white circle in Figure 5c. In
that case, the horizontal state su,i�1

is combined
with the vertical state vu,F and an attention-based
context vector cF,i using a feedforward network
fupdate

F to obtain a joint context-dependent encod-
ing of the field F and the position i:

˜

eF,i = fupdate

F (vu,F, su,i�1

, cF,i).

The result is used to perform a vertical LSTM up-
date for the corresponding child wi:

vwi = LSTM

v
(vu,F, ˜eF,i).

Finally, the horizontal LSTM state is updated us-
ing the same field-position encoding, and the pro-
cess continues:

su,i = LSTM

h
(su,i�1

, ˜eF,i).
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タスク: code generation

‣自然言語 (や他の入力) から目的の言語の対応するコードを得る 

‣教師あり学習: (text, program) のペアから学習 

‣翻訳に近い (が、出力の構造に対する制約が厳しい) 

•if cond1: body1; else: body2 

• Well-formedness, well-typedness, executability 

• Abstract syntax network: well-formedness を保証するために
言語の文法仕様を組み込むことのできるモデル

3

text sort my list in descending order

program sorted(mylist, reverse=True)



Outline

‣Hearthstone 

• 去年リリースされた code generation のベンチ 
マークのためのデータセット (Ling et al., 2016) 

‣Abstract syntax networks 
• 記述した文法に従って決定されるモデル 

‣結果と分析、今後の課題、議論
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Figure 1: Example code for the “Dire Wolf Alpha”
Hearthstone card.

show me the fare from ci0 to ci1

lambda $0 e
( exists $1 ( and ( from $1 ci0 )

( to $1 ci1 )
( = ( fare $1 ) $0 ) ) )

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and ci1 tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-
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Constructor field modules Each field F of a
constructor has a corresponding module whose
role is to determine the number of children asso-
ciated with that field and to propagate an updated
vertical LSTM state to them. In the case of fields
with singular cardinality, the decision and up-
date are both vacuous, as exactly one child is al-
ways generated. Hence these modules forward the
field vertical LSTM state vu,F unchanged to the
child w corresponding to F:

vw = vu,F. (1)

Fields with optional cardinality can have either
zero or one children; this choice is made using a
feedforward network applied to the vertical LSTM
state:

p(zF = 1 | vu,F) = sigmoid (fgen

F (vu,F)) . (2)

If a child is to be generated, then as in (1), the state
is propagated forward without modification.

In the case of sequential fields, a horizon-
tal LSTM is employed for both child decisions and
state updates. We refer to Figure 5c for an illus-
tration of the recurrent process. After being ini-
tialized with a transformation of the vertical state,
sF,0 = WFvu,F, the horizontal LSTM iteratively

decides whether to generate another child by ap-
plying a modified form of (2):

p (zF,i = 1 | sF,i�1

, vu,F) =

sigmoid (fgen

F (sF,i�1

, vu,F)) .

If zF,i = 0, generation stops and the process ter-
minates, as represented by the solid black circle
in Figure 5c. Otherwise, the process continues as
represented by the white circle in Figure 5c. In
that case, the horizontal state su,i�1

is combined
with the vertical state vu,F and an attention-based
context vector cF,i using a feedforward network
fupdate

F to obtain a joint context-dependent encod-
ing of the field F and the position i:

˜

eF,i = fupdate

F (vu,F, su,i�1

, cF,i).

The result is used to perform a vertical LSTM up-
date for the corresponding child wi:

vwi = LSTM

v
(vu,F, ˜eF,i).

Finally, the horizontal LSTM state is updated us-
ing the same field-position encoding, and the pro-
cess continues:

su,i = LSTM

h
(su,i�1

, ˜eF,i).

ATIS GEO JOBS

System Accuracy System Accuracy System Accuracy
ZH15 84.2 ZH15 88.9 ZH15 85.0
ZC07 84.6 KCAZ13 89.0 PEK03 88.0
WKZ14 91.3 WKZ14 90.4 LJK13 90.7
DL16 84.6 DL16 87.1 DL16 90.0
ASN 85.3 ASN 85.7 ASN 91.4

+ SUPATT 85.9 + SUPATT 87.1 + SUPATT 92.9

Table 1: Accuracies for the semantic parsing tasks. ASN denotes our abstract syntax network framework.
SUPATT refers to the supervised attention mentioned in Section 3.4.

System Accuracy BLEU F1
NEAREST 3.0 65.0 65.7
LPN 6.1 67.1 –
ASN 18.2 77.6 72.4

+ SUPATT 22.7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-
PATT refers to the system with supervised atten-
tion mentioned in Section 3.4. LPN refers to the
system of Ling et al. (2016). Our nearest neigh-
bor baseline NEAREST follows that of Ling et al.
(2016), though it performs somewhat better; its
nonzero exact match number stems from spurious
repetition in the data.

a new state-of-the-art accuracy of 91.4% on the
JOBS dataset, and this number improves to 92.9%
when supervised attention is added. On the ATIS
and GEO datasets, we respectively exceed and
match the results of Dong and Lapata (2016).
However, these fall short of the previous best re-
sults of 91.3% and 90.4%, respectively, obtained
by Wang et al. (2014). This difference may be par-
tially attributable to the use of typing information
or rich lexicons in most previous semantic pars-
ing approaches (Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2013; Wang et al., 2014; Zhao
and Huang, 2015).

On the HEARTHSTONE dataset, we improve
significantly over the initial results of Ling et al.
(2016) across all evaluation metrics, as shown in
Table 2. On the more stringent exact match metric,
we improve from 6.1% to 18.2%, and on token-
level BLEU, we improve from 67.1 to 77.6. When
supervised attention is added, we obtain an ad-
ditional increase of several points on each scale,
achieving peak results of 22.7% accuracy and 79.2
BLEU.

class IronbarkProtector(MinionCard):
def __init__(self):
super().__init__(

'Ironbark Protector', 8,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

8, 8, taunt=True)

Figure 6: Cards with minimal descriptions exhibit
a uniform structure that our system almost always
predicts correctly, as in this instance.

class ManaWyrm(MinionCard):
def __init__(self):
super().__init__(

'Mana Wyrm', 1,
CHARACTER_CLASS.MAGE,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

1, 3, effects=[
Effect(

SpellCast(),
ActionTag(

Give(ChangeAttack(1)),
SelfSelector()))

])

Figure 7: For many cards with moderately com-
plex descriptions, the implementation follows a
functional style that seems to suit our modeling
strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion

As the examples in Figures 6-8 show, classes in
the HEARTHSTONE dataset share a great deal of
common structure. As a result, in the simplest
cases, such as in Figure 6, generating the code is
simply a matter of matching the overall structure
and plugging in the correct values in the initializer
and a few other places. In such cases, our sys-
tem generally predicts the correct code, with the



Hearthstone データセット (Ling+’16)
‣カードのメタデータとその python 実装の組からなるデータ 

• カードの属性値は得られていることを仮定 (画像処理しない)
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tains 79.2 BLEU and 22.7% exact match
accuracy, compared to previous state-of-
the-art values of 67.1 and 6.1%. Further-
more, we perform competitively on the
ATIS, JOBS, and GEO semantic parsing
datasets with no task-specific engineering.

1 Introduction

Tasks like semantic parsing and code generation
are challenging in part because they are struc-
tured (the output must be well-formed) but not
synchronous (the output structure diverges from
the input structure).

Sequence-to-sequence models have proven ef-
fective for both tasks (Dong and Lapata, 2016;
Ling et al., 2016), using encoder-decoder frame-
works to exploit the sequential structure on both
the input and output side. Yet these approaches
do not account for much richer structural con-
straints on outputs—including well-formedness,
well-typedness, and executability. The well-
formedness case is of particular interest, since it
can readily be enforced by representing outputs as
abstract syntax trees (ASTs) (Aho et al., 2006), an
approach that can be seen as a much lighter weight

⇤Equal contribution.

name: [
'D', 'i', 'r', 'e', ' ',
'W', 'o', 'l', 'f', ' ',
'A', 'l', 'p', 'h', 'a']

cost: ['2']
type: ['Minion']
rarity: ['Common']
race: ['Beast']
class: ['Neutral']
description: [

'Adjacent', 'minions', 'have',
'+', '1', 'Attack', '.']

health: ['2']
attack: ['2']
durability: ['-1']

class DireWolfAlpha(MinionCard):
def __init__(self):

super().__init__(
"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)

def create_minion(self, player):
return Minion(2, 2, auras=[
Aura(ChangeAttack(1), MinionSelector(Adjacent()))

])

Figure 1: Example code for the “Dire Wolf Alpha”
Hearthstone card.

show me the fare from ci0 to ci1

lambda $0 e
( exists $1 ( and ( from $1 ci0 )

( to $1 ci1 )
( = ( fare $1 ) $0 ) ) )

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and ci1 tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-
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データの目的？

‣ (恐らく) 特定のアプリケーションを意図して作られたもの 
ではない 

‣入力データからある程度複雑なプログラム (ここでは1つの 

python クラス) を生成する手法のためのベンチマーク 

‣なぜカードゲームと python クラスか？ 

• カードゲームのオープンソース実装が存在するため、カードに 
対応するコードの収集が容易であるため
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Hearthstone

7

https://us.battle.net/hearthstone/ja/game-guide/



Heathbreaker

8

https://github.com/danielyule/hearthbreaker/



1カード = 1クラス
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https://github.com/danielyule/hearthbreaker/blob/5dad317744882cb4c4fbbce53edc3d7f4576552e/hearthbreaker/cards/
minions/neutral.py#L138
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version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-
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データ集め
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抽出

訓練データ: 533ペア; テストデータ: 66ペア



Outline

‣Hearthstone 

• 去年リリースされた code generation のベンチ 
マークのためのデータセット (Ling+’2016) 

‣Abstract syntax networks 
• 記述した文法に従って決定されるモデル 

‣結果と分析、今後の課題
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( exists $1 ( and ( from $1 ci0 )

( to $1 ci1 )
( = ( fare $1 ) $0 ) ) )

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and ci1 tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-
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(a) A composite type module choosing a constructor for
the corresponding type.

If
test

body

orelse

expr

stmt*

stmt*

(b) A constructor module computing updated vertical
LSTM states.

stmt*
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(c) A constructor field module (sequential cardinal-
ity) generating children to populate the field. At each
step, the module decides whether to generate a child and
continue (white circle) or stop (black circle).

damage

...

identifier
__init__

create_minion

add_buff

change_attack
add_buff

(d) A primitive type module choosing a value from a
closed list.

Figure 5: The module classes constituting our decoder. For brevity, we omit the cardinality modules for
singular and optional cardinalities.

Constructor field modules Each field F of a
constructor has a corresponding module whose
role is to determine the number of children asso-
ciated with that field and to propagate an updated
vertical LSTM state to them. In the case of fields
with singular cardinality, the decision and up-
date are both vacuous, as exactly one child is al-
ways generated. Hence these modules forward the
field vertical LSTM state vu,F unchanged to the
child w corresponding to F:

vw = vu,F. (1)

Fields with optional cardinality can have either
zero or one children; this choice is made using a
feedforward network applied to the vertical LSTM
state:

p(zF = 1 | vu,F) = sigmoid (fgen

F (vu,F)) . (2)

If a child is to be generated, then as in (1), the state
is propagated forward without modification.

In the case of sequential fields, a horizon-
tal LSTM is employed for both child decisions and
state updates. We refer to Figure 5c for an illus-
tration of the recurrent process. After being ini-
tialized with a transformation of the vertical state,
sF,0 = WFvu,F, the horizontal LSTM iteratively

decides whether to generate another child by ap-
plying a modified form of (2):

p (zF,i = 1 | sF,i�1

, vu,F) =

sigmoid (fgen

F (sF,i�1

, vu,F)) .

If zF,i = 0, generation stops and the process ter-
minates, as represented by the solid black circle
in Figure 5c. Otherwise, the process continues as
represented by the white circle in Figure 5c. In
that case, the horizontal state su,i�1

is combined
with the vertical state vu,F and an attention-based
context vector cF,i using a feedforward network
fupdate

F to obtain a joint context-dependent encod-
ing of the field F and the position i:

˜

eF,i = fupdate

F (vu,F, su,i�1

, cF,i).

The result is used to perform a vertical LSTM up-
date for the corresponding child wi:

vwi = LSTM

v
(vu,F, ˜eF,i).

Finally, the horizontal LSTM state is updated us-
ing the same field-position encoding, and the pro-
cess continues:

su,i = LSTM

h
(su,i�1

, ˜eF,i).

ATIS GEO JOBS

System Accuracy System Accuracy System Accuracy
ZH15 84.2 ZH15 88.9 ZH15 85.0
ZC07 84.6 KCAZ13 89.0 PEK03 88.0
WKZ14 91.3 WKZ14 90.4 LJK13 90.7
DL16 84.6 DL16 87.1 DL16 90.0
ASN 85.3 ASN 85.7 ASN 91.4

+ SUPATT 85.9 + SUPATT 87.1 + SUPATT 92.9

Table 1: Accuracies for the semantic parsing tasks. ASN denotes our abstract syntax network framework.
SUPATT refers to the supervised attention mentioned in Section 3.4.

System Accuracy BLEU F1
NEAREST 3.0 65.0 65.7
LPN 6.1 67.1 –
ASN 18.2 77.6 72.4

+ SUPATT 22.7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-
PATT refers to the system with supervised atten-
tion mentioned in Section 3.4. LPN refers to the
system of Ling et al. (2016). Our nearest neigh-
bor baseline NEAREST follows that of Ling et al.
(2016), though it performs somewhat better; its
nonzero exact match number stems from spurious
repetition in the data.

a new state-of-the-art accuracy of 91.4% on the
JOBS dataset, and this number improves to 92.9%
when supervised attention is added. On the ATIS
and GEO datasets, we respectively exceed and
match the results of Dong and Lapata (2016).
However, these fall short of the previous best re-
sults of 91.3% and 90.4%, respectively, obtained
by Wang et al. (2014). This difference may be par-
tially attributable to the use of typing information
or rich lexicons in most previous semantic pars-
ing approaches (Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2013; Wang et al., 2014; Zhao
and Huang, 2015).

On the HEARTHSTONE dataset, we improve
significantly over the initial results of Ling et al.
(2016) across all evaluation metrics, as shown in
Table 2. On the more stringent exact match metric,
we improve from 6.1% to 18.2%, and on token-
level BLEU, we improve from 67.1 to 77.6. When
supervised attention is added, we obtain an ad-
ditional increase of several points on each scale,
achieving peak results of 22.7% accuracy and 79.2
BLEU.

class IronbarkProtector(MinionCard):
def __init__(self):
super().__init__(

'Ironbark Protector', 8,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

8, 8, taunt=True)

Figure 6: Cards with minimal descriptions exhibit
a uniform structure that our system almost always
predicts correctly, as in this instance.

class ManaWyrm(MinionCard):
def __init__(self):
super().__init__(

'Mana Wyrm', 1,
CHARACTER_CLASS.MAGE,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

1, 3, effects=[
Effect(

SpellCast(),
ActionTag(

Give(ChangeAttack(1)),
SelfSelector()))

])

Figure 7: For many cards with moderately com-
plex descriptions, the implementation follows a
functional style that seems to suit our modeling
strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion

As the examples in Figures 6-8 show, classes in
the HEARTHSTONE dataset share a great deal of
common structure. As a result, in the simplest
cases, such as in Figure 6, generating the code is
simply a matter of matching the overall structure
and plugging in the correct values in the initializer
and a few other places. In such cases, our sys-
tem generally predicts the correct code, with the



近年の seq2seq generation

‣文だけでなく線形化した構造を出力するモデルが流行 

‣Vinvalys+’15 NIPS 

• 句構造 parsing ができてしまう 

‣Jia & Liang’16 ACL 

• logical form を出力 

• data augmentation 

‣Konstas+’17 ACL 

• AMR parsing もできるよ
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Figure 2: Example parsing task and its linearization.

The matrix W
o

consists of the vector representations of each output symbol and the symbol �b
is a Kronecker delta with a dimension for each output symbol, so softmax(W

o

· hTA+t)
>�Bt is

precisely the Bt’th element of the distribution defined by the softmax. Every output sequence
terminates with a special end-of-sequence token which is necessary in order to define a distribution
over sequences of variable lengths. We use two different sets of LSTM parameters, one for the input
sequence and one for the output sequence, as shown in Figure 1. Stochastic gradient descent is used
to maximize the training objective which is the average over the training set of the log probability
of the correct output sequence given the input sequence.

2.1 Attention Mechanism

An important extension of the sequence-to-sequence model is by adding an attention mechanism.
We adapted the attention model from [2] which, to produce each output symbol Bt, uses an attention
mechanism over the encoder LSTM states. Similar to our sequence-to-sequence model described
in the previous section, we use two separate LSTMs (one to encode the sequence of input words
Ai, and another one to produce or decode the output symbols Bi). Recall that the encoder hidden
states are denoted (h

1

, . . . , hTA) and we denote the hidden states of the decoder by (d
1

, . . . , dTB ) :=

(hTA+1

, . . . , hTA+TB ).

To compute the attention vector at each output time t over the input words (1, . . . , TA) we define:

ut
i = vT tanh(W 0

1

hi +W 0
2

dt)

ati = softmax(ut
i)

d0t =

TAX

i=1

atihi

The vector v and matrices W 0
1

,W 0
2

are learnable parameters of the model. The vector ut has length
TA and its i-th item contains a score of how much attention should be put on the i-th hidden encoder
state hi. These scores are normalized by softmax to create the attention mask at over encoder hidden
states. In all our experiments, we use the same hidden dimensionality (256) at the encoder and the
decoder, so v is a vector and W 0

1

and W 0
2

are square matrices. Lastly, we concatenate d0t with dt,
which becomes the new hidden state from which we make predictions, and which is fed to the next
time step in our recurrent model.

In Section 4 we provide an analysis of what the attention mechanism learned, and we visualize the
normalized attention vector at for all t in Figure 4.

2.2 Linearizing Parsing Trees

To apply the model described above to parsing, we need to design an invertible way of converting
the parse tree into a sequence (linearization). We do this in a very simple way following a depth-first
traversal order, as depicted in Figure 2.

We use the above model for parsing in the following way. First, the network consumes the sentence
in a left-to-right sweep, creating vectors in memory. Then, it outputs the linearized parse tree using
information in these vectors. As described below, we use 3 LSTM layers, reverse the input sentence

3

GEO
x: “what is the population of iowa ?”
y: _answer ( NV , (

_population ( NV , V1 ) , _const (

V0 , _stateid ( iowa ) ) ) )

ATIS
x: “can you list all flights from chicago to milwaukee”
y: ( _lambda $0 e ( _and

( _flight $0 )

( _from $0 chicago : _ci )

( _to $0 milwaukee : _ci ) ) )

Overnight
x: “when is the weekly standup”
y: ( call listValue ( call

getProperty meeting.weekly_standup

( string start_time ) ) )

Figure 2: One example from each of our domains.
We tokenize logical forms as shown, thereby cast-
ing semantic parsing as a sequence-to-sequence
task.

ing prior knowledge into a domain-general struc-
tured prediction model. In data recombination,
prior knowledge about a task is used to build a
high-precision generative model that expands the
empirical distribution by allowing fragments of
different examples to be combined in particular
ways. Samples from this generative model are
then used to train a domain-general model. In the
case of semantic parsing, we construct a genera-
tive model by inducing a synchronous context-free
grammar (SCFG), creating new examples such
as those shown in Figure 1; our domain-general
model is a sequence-to-sequence RNN with a
novel attention-based copying mechanism. Data
recombination boosts the accuracy of our RNN
model on three semantic parsing datasets. On the
GEO dataset, data recombination improves test ac-
curacy by 4.3 percentage points over our baseline
RNN, leading to new state-of-the-art results for
models that do not use a seed lexicon for predi-
cates.

2 Problem statement

We cast semantic parsing as a sequence-to-
sequence task. The input utterance x is a sequence
of words x1, . . . , xm 2 V (in), the input vocabulary;
similarly, the output logical form y is a sequence
of tokens y1, . . . , yn 2 V (out), the output vocab-
ulary. A linear sequence of tokens might appear
to lose the hierarchical structure of a logical form,
but there is precedent for this choice: Vinyals et al.

(2015b) showed that an RNN can reliably predict
tree-structured outputs in a linear fashion.

We evaluate our system on three existing se-
mantic parsing datasets. Figure 2 shows sample
input-output pairs from each of these datasets.

• GeoQuery (GEO) contains natural language
questions about US geography paired with
corresponding Prolog database queries. We
use the standard split of 600 training exam-
ples and 280 test examples introduced by
Zettlemoyer and Collins (2005). We prepro-
cess the logical forms to De Brujin index no-
tation to standardize variable naming.

• ATIS (ATIS) contains natural language
queries for a flights database paired with
corresponding database queries written in
lambda calculus. We train on 4473 examples
and evaluate on the 448 test examples used
by Zettlemoyer and Collins (2007).

• Overnight (OVERNIGHT) contains logical
forms paired with natural language para-
phrases across eight varied subdomains.
Wang et al. (2015) constructed the dataset by
generating all possible logical forms up to
some depth threshold, then getting multiple
natural language paraphrases for each logi-
cal form from workers on Amazon Mechan-
ical Turk. We evaluate on the same train/test
splits as Wang et al. (2015).

In this paper, we only explore learning from log-
ical forms. In the last few years, there has an
emergence of semantic parsers learned from de-
notations (Clarke et al., 2010; Liang et al., 2011;
Berant et al., 2013; Artzi and Zettlemoyer, 2013b).
While our system cannot directly learn from deno-
tations, it could be used to rerank candidate deriva-
tions generated by one of these other systems.

3 Sequence-to-sequence RNN Model
Our sequence-to-sequence RNN model is based
on existing attention-based neural machine trans-
lation models (Bahdanau et al., 2014; Luong et al.,
2015a), but also includes a novel attention-based
copying mechanism. Similar copying mechanisms
have been explored in parallel by Gu et al. (2016)
and Gulcehre et al. (2016).

3.1 Basic Model
Encoder. The encoder converts the input se-
quence x1, . . . , xm into a sequence of context-

US officials held an expert group meeting in January 2002 in New York.
(h / hold-04 

  :ARG0 (p2 / person 

    :ARG0-of (h2 / have-org-role-91 

         :ARG1 (c2 / country 

           :name (n3 / name  

             :op1 “United" op2: “States”)) 

         :ARG2 (o / official))) 

  :ARG1 (m / meet-03 

    :ARG0 (p / person 

         :ARG1-of (e / expert-01) 

              :ARG2-of (g / group-01))) 

  :time (d2 / date-entity :year 2002 :month 1) 

  :location (c / city 

    :name (n / name :op1 “New" :op2 “York”)))

hold  
  :ARG0 person :ARG0-of have-org-role :ARG1 loc_0 :ARG2 official  
  :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group  
  :time date-entity year_0 month_0  
  :location loc_1

hold  
  :ARG0 person :ARG0-of have-org-role :ARG1 country_0 :ARG2 official  
  :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group  
  :time date-entity year_0 month_0  
  :location city_1

hold  
  :ARG0 person :ARG0-of have-org-role :ARG1 country :name name :op1 
United :op2 States :ARG2 official  
  :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group  
  :time date-entity :year 2002 :month 1  
  :location city :name name :op1 New :op2 York

hold  
  :ARG0 ( person :ARG0-of ( have-org-role :ARG1 loc_0 :ARG2 official ) )  
  :ARG1 ( meet :ARG0 ( person :ARG1-of expert :ARG2-of group ) )  
  :time ( date-entity year_0 month_0 )  
  :location loc_1

US officials held an expert group meeting in January 2002 in New York.

country_0 officials held an expert group meeting in month_0 year_0 in city_1.

loc_0 officials held an expert group meeting in month_0 year_0 in loc_1.

loc_0 officials held an expert group meeting in month_0 year_0 in loc_1.

(a)

(b)

(c)

(d)

Figure 2: Preprocessing methods applied to sentence (top row) - AMR graph (left column) pairs.
Sentence-graph pairs after (a) graph simplification, (b) named entity anonymization, (c) named entity
clustering, and (d) insertion of scope markers.

ation, we render the corresponding format when
predicted. Figure 2(b) contains an example of all
preprocessing up to this stage.

Named Entity Clusters When performing
AMR generation, each of the AMR fine-grained
entity types is manually mapped to one of the
four coarse entity types used in the Stanford NER
system (Finkel et al., 2005): person, location,
organization and misc. This reduces the sparsity
associated with many rarely occurring entity
types. Figure 2 (c) contains an example with
named entity clusters.

NER for Parsing When parsing, we must nor-
malize test sentences to match our anonymized
training data. To produce fine-grained named enti-
ties, we run the Stanford NER system and first try
to replace any identified span with a fine-grained
category based on alignments observed during
training. If this fails, we anonymize the sentence
using the coarse categories predicted by the NER
system, which are also categories in AMR. After
parsing, we deterministically generate AMR for
anonymizations using the corresponding text span.

4.2 Linearization
Linearization Order Our linearization order
is defined by the order of nodes visited by
depth first search, including backward travers-
ing steps. For example, in Figure 2, start-
ing at meet the order contains meet, :ARG0,
person, :ARG1-of, expert, :ARG2-of,

group, :ARG2-of, :ARG1-of, :ARG0.4 The
order traverses children in the sequence they are
presented in the AMR. We consider alternative or-
derings of children in Section 7 but always follow
the pattern demonstrated above.

Rendering Function Our rendering function
marks scope, and generates tokens following the
pre-order traversal of the graph: (1) if the element
is a node, it emits the type of the node. (2) if the el-
ement is an edge, it emits the type of the edge and
then recursively emits a bracketed string for the
(concept) node immediately after it. In case the
node has only one child we omit the scope mark-
ers (denoted with left “(”, and right “)” paren-
theses), thus significantly reducing the number of
generated tokens. Figure 2(d) contains an example
showing all of the preprocessing techniques and
scope markers that we use in our full model.

5 Experimental Setup

We conduct all experiments on the AMR cor-
pus used in SemEval-2016 Task 8 (LDC2015E86),
which contains 16,833/1,368/1,371 train/dev/test
examples. For the paired training procedure of Al-
gorithm 1, we use Gigaword as our external cor-
pus and sample sentences that only contain words
from the AMR corpus vocabulary W . We sub-
sampled the original sentence to ensure there is no
overlap with the AMR training or test sets. Table 2

4Sense, instance-of and variable information has
been removed at the point of linearization.



過去の研究と問題点
‣コード生成の既存研究 

• Ling+’16: Latent Predictor Networks 

• 基本的に seq2seq + attention 

• 問題点: 正しい python 文法のコードを吐くことは保証されない 

• Dong & Lapata’16: top-down LSTM 

• Top-down なので木構造の出力は 
保証できるが、木構造が python  
の文法に則っていることは  
保証されない
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Figure 2: Sequence-to-sequence (SEQ2SEQ)
model with two-layer recurrent neural networks.

token. For the decoder, h0
t

= W
a

e(y

t�1) is the
word vector of the previous predicted word, where
W

a

2 Rn⇥|Va|. Notice that the encoder and de-
coder have different LSTM parameters.

Once the tokens of the input sequence
x1, · · · , x|q| are encoded into vectors, they are
used to initialize the hidden states of the first time
step in the decoder. Next, the hidden vector of the
topmost LSTM hL

t

in the decoder is used to pre-
dict the t-th output token as:

p (y

t

|y
<t

, q) = softmax
�
W

o

hL

t

�|e (y

t

) (3)

where W
o

2 R|Va|⇥n is a parameter matrix, and
e (y

t

) 2 {0, 1}|Va| a one-hot vector for computing
y

t

’s probability from the predicted distribution.
We augment every sequence with a “start-of-

sequence” <s> and “end-of-sequence” </s> to-
ken. The generation process terminates once </s>
is predicted. The conditional probability of gener-
ating the whole sequence p (a|q) is then obtained
using Equation (1).

3.2 Sequence-to-Tree Model
The SEQ2SEQ model has a potential drawback in
that it ignores the hierarchical structure of logical
forms. As a result, it needs to memorize various
pieces of auxiliary information (e.g., bracket pairs)
to generate well-formed output. In the following
we present a hierarchical tree decoder which is
more faithful to the compositional nature of mean-
ing representations. A schematic description of
the model is shown in Figure 3.

The present model shares the same encoder with
the sequence-to-sequence model described in Sec-
tion 3.1 (essentially it learns to encode input q as
vectors). However, its decoder is fundamentally
different as it generates logical forms in a top-
down manner. In order to represent tree structure,

LSTM

LSTM

LSTM

LSTM

lambda $0 e

and

<n>

LSTM

LSTM
LSTM

LSTM

LSTM

LSTM

<n> <n> </s>

LSTM

</s>

from

LSTM

LSTM

LSTM

LSTM

$0 dallas:ci </s>>

LSTM

LSTM

LSTM

LSTM

<n> 1600:ti </s>

LSTM

LSTM

departure
_time $0

LSTM

</s>

Parent feeding
Start decoding

LSTM Encoder unit
LSTM Decoder unit

<n> Nonterminal

Figure 3: Sequence-to-tree (SEQ2TREE) model
with a hierarchical tree decoder.

we define a “nonterminal” <n> token which in-
dicates subtrees. As shown in Figure 3, we pre-
process the logical form “lambda $0 e (and (>(de-
parture time $0) 1600:ti) (from $0 dallas:ci))” to a
tree by replacing tokens between pairs of brackets
with nonterminals. Special tokens <s> and <(>
denote the beginning of a sequence and nontermi-
nal sequence, respectively (omitted from Figure 3
due to lack of space). Token </s> represents the
end of sequence.

After encoding input q, the hierarchical tree de-
coder uses recurrent neural networks to generate
tokens at depth 1 of the subtree corresponding to
parts of logical form a. If the predicted token
is <n>, we decode the sequence by conditioning
on the nonterminal’s hidden vector. This process
terminates when no more nonterminals are emit-
ted. In other words, a sequence decoder is used to
hierarchically generate the tree structure.

In contrast to the sequence decoder described
in Section 3.1, the current hidden state does not
only depend on its previous time step. In order to
better utilize the parent nonterminal’s information,
we introduce a parent-feeding connection where
the hidden vector of the parent nonterminal is con-
catenated with the inputs and fed into LSTM.

As an example, Figure 4 shows the decoding
tree corresponding to the logical form “A B (C)”,
where y1 · · · y6 are predicted tokens, and t1 · · · t6
denote different time steps. Span “(C)” corre-
sponds to a subtree. Decoding in this example has
two steps: once input q has been encoded, we first
generate y1 · · · y4 at depth 1 until token </s> is

35



本研究の主な主張
‣一つのクラスのコードのような複雑な構造を出力するには 
単純な seq2seq ではダメ (特に well-formedness) 

‣プログラミング言語の文法規則に則って丁寧にモデル化を 
行うことが重要 

‣モデルは複数モジュールからなり、文法を指定すれば定まる 

• 文法を記述すれば他のデータにも適用可能 (e.g., Prolog)
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stmt
ClassDef

Return

If

For

While If

(a) A composite type module choosing a constructor for
the corresponding type.

If
test

body

orelse

expr

stmt*

stmt*

(b) A constructor module computing updated vertical
LSTM states.

stmt*

stmt

(c) A constructor field module (sequential cardinal-
ity) generating children to populate the field. At each
step, the module decides whether to generate a child and
continue (white circle) or stop (black circle).

damage

...

identifier
__init__

create_minion

add_buff

change_attack
add_buff

(d) A primitive type module choosing a value from a
closed list.

Figure 5: The module classes constituting our decoder. For brevity, we omit the cardinality modules for
singular and optional cardinalities.

Constructor field modules Each field F of a
constructor has a corresponding module whose
role is to determine the number of children asso-
ciated with that field and to propagate an updated
vertical LSTM state to them. In the case of fields
with singular cardinality, the decision and up-
date are both vacuous, as exactly one child is al-
ways generated. Hence these modules forward the
field vertical LSTM state vu,F unchanged to the
child w corresponding to F:

vw = vu,F. (1)

Fields with optional cardinality can have either
zero or one children; this choice is made using a
feedforward network applied to the vertical LSTM
state:

p(zF = 1 | vu,F) = sigmoid (fgen

F (vu,F)) . (2)

If a child is to be generated, then as in (1), the state
is propagated forward without modification.

In the case of sequential fields, a horizon-
tal LSTM is employed for both child decisions and
state updates. We refer to Figure 5c for an illus-
tration of the recurrent process. After being ini-
tialized with a transformation of the vertical state,
sF,0 = WFvu,F, the horizontal LSTM iteratively

decides whether to generate another child by ap-
plying a modified form of (2):

p (zF,i = 1 | sF,i�1

, vu,F) =

sigmoid (fgen

F (sF,i�1

, vu,F)) .

If zF,i = 0, generation stops and the process ter-
minates, as represented by the solid black circle
in Figure 5c. Otherwise, the process continues as
represented by the white circle in Figure 5c. In
that case, the horizontal state su,i�1

is combined
with the vertical state vu,F and an attention-based
context vector cF,i using a feedforward network
fupdate

F to obtain a joint context-dependent encod-
ing of the field F and the position i:

˜

eF,i = fupdate

F (vu,F, su,i�1

, cF,i).

The result is used to perform a vertical LSTM up-
date for the corresponding child wi:

vwi = LSTM

v
(vu,F, ˜eF,i).

Finally, the horizontal LSTM state is updated us-
ing the same field-position encoding, and the pro-
cess continues:

su,i = LSTM

h
(su,i�1

, ˜eF,i).



Abstract Syntax Networks

‣コード (左) は抽象構文木 (右) に変換できる 

• decoder は抽象構文木を生成し、それをコードに逆変換 

• python の文法規則を外部から与える (abstract syntax description language)
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Abstract

Tasks like code generation and semantic
parsing require mapping unstructured (or
partially structured) inputs to well-formed,
executable outputs. We introduce ab-
stract syntax networks, a modeling frame-
work for these problems. The outputs
are represented as abstract syntax trees
(ASTs) and constructed by a decoder with
a dynamically-determined modular struc-
ture paralleling the structure of the output
tree. On the benchmark HEARTHSTONE
dataset for code generation, our model ob-
tains 79.2 BLEU and 22.7% exact match
accuracy, compared to previous state-of-
the-art values of 67.1 and 6.1%. Further-
more, we perform competitively on the
ATIS, JOBS, and GEO semantic parsing
datasets with no task-specific engineering.

1 Introduction

Tasks like semantic parsing and code generation
are challenging in part because they are struc-
tured (the output must be well-formed) but not
synchronous (the output structure diverges from
the input structure).

Sequence-to-sequence models have proven ef-
fective for both tasks (Dong and Lapata, 2016;
Ling et al., 2016), using encoder-decoder frame-
works to exploit the sequential structure on both
the input and output side. Yet these approaches
do not account for much richer structural con-
straints on outputs—including well-formedness,
well-typedness, and executability. The well-
formedness case is of particular interest, since it
can readily be enforced by representing outputs as
abstract syntax trees (ASTs) (Aho et al., 2006), an
approach that can be seen as a much lighter weight

⇤Equal contribution.

name: [
'D', 'i', 'r', 'e', ' ',
'W', 'o', 'l', 'f', ' ',
'A', 'l', 'p', 'h', 'a']

cost: ['2']
type: ['Minion']
rarity: ['Common']
race: ['Beast']
class: ['Neutral']
description: [

'Adjacent', 'minions', 'have',
'+', '1', 'Attack', '.']

health: ['2']
attack: ['2']
durability: ['-1']

class DireWolfAlpha(MinionCard):
def __init__(self):

super().__init__(
"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)

def create_minion(self, player):
return Minion(2, 2, auras=[
Aura(ChangeAttack(1), MinionSelector(Adjacent()))

])

Figure 1: Example code for the “Dire Wolf Alpha”
Hearthstone card.

show me the fare from ci0 to ci1

lambda $0 e
( exists $1 ( and ( from $1 ci0 )

( to $1 ci1 )
( = ( fare $1 ) $0 ) ) )

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and ci1 tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-
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Figure 3: Fragments from the abstract syntax tree corresponding to the example code in Figure 1. Blue
boxes represent composite nodes, which expand via a constructor with a prescribed set of named children.
Orange boxes represent primitive nodes, with their corresponding values written underneath. Solid black
squares correspond to constructor fields with sequential cardinality, such as the body of a class
definition (Figure 3a) or the arguments of a function call (Figure 3b).

maintain recurrent state.

2 Data Representation

2.1 Abstract Syntax Trees

Our model makes use of the Abstract Syntax
Description Language (ASDL) framework (Wang
et al., 1997), which represents code fragments as
trees with typed nodes. Primitive types correspond
to atomic values, like integers or identifiers. Ac-
cordingly, primitive nodes are annotated with a
primitive type and a value of that type—for in-
stance, in Figure 3a, the identifier node stor-
ing "create minion" represents a function of
the same name.

Composite types correspond to language con-
structs, like expressions or statements. Each type
has a collection of constructors, each of which
specifies the particular language construct a node
of that type represents. Figure 4 shows con-
structors for the statement (stmt) and expression
(expr) types. The associated language constructs
include function and class definitions, return state-
ments, binary operations, and function calls.

Composite types enter syntax trees via compos-
ite nodes, annotated with a composite type and a
choice of constructor specifying how the node ex-
pands. The root node in Figure 3a, for example, is

1The full grammar can be found online on the
documentation page for the Python ast module:
https://docs.python.org/3/library/ast.
html#abstract-grammar

primitive types: identifier, object, ...

stmt
= FunctionDef(

identifier name, arg* args, stmt* body)
| ClassDef(

identifier name, expr* bases, stmt* body)
| Return(expr? value)
| ...

expr
= BinOp(expr left, operator op, expr right)
| Call(expr func, expr* args)
| Str(string s)
| Name(identifier id, expr_context ctx)
| ...

...

Figure 4: A simplified fragment of the Python
ASDL grammar.1

a composite node of type stmt that represents a
class definition and therefore uses the ClassDef
constructor. In Figure 3b, on the other hand, the
root uses the Call constructor because it repre-
sents a function call.

Children are specified by named and typed
fields of the constructor, which have cardinalities
of singular, optional, or sequential.
By default, fields have singular cardinality,
meaning they correspond to exactly one child.
For instance, the ClassDef constructor has a
singular name field of type identifier.
Fields of optional cardinality are associ-
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maintain recurrent state.

2 Data Representation

2.1 Abstract Syntax Trees

Our model makes use of the Abstract Syntax
Description Language (ASDL) framework (Wang
et al., 1997), which represents code fragments as
trees with typed nodes. Primitive types correspond
to atomic values, like integers or identifiers. Ac-
cordingly, primitive nodes are annotated with a
primitive type and a value of that type—for in-
stance, in Figure 3a, the identifier node stor-
ing "create minion" represents a function of
the same name.

Composite types correspond to language con-
structs, like expressions or statements. Each type
has a collection of constructors, each of which
specifies the particular language construct a node
of that type represents. Figure 4 shows con-
structors for the statement (stmt) and expression
(expr) types. The associated language constructs
include function and class definitions, return state-
ments, binary operations, and function calls.

Composite types enter syntax trees via compos-
ite nodes, annotated with a composite type and a
choice of constructor specifying how the node ex-
pands. The root node in Figure 3a, for example, is

1The full grammar can be found online on the
documentation page for the Python ast module:
https://docs.python.org/3/library/ast.
html#abstract-grammar

primitive types: identifier, object, ...

stmt
= FunctionDef(

identifier name, arg* args, stmt* body)
| ClassDef(

identifier name, expr* bases, stmt* body)
| Return(expr? value)
| ...

expr
= BinOp(expr left, operator op, expr right)
| Call(expr func, expr* args)
| Str(string s)
| Name(identifier id, expr_context ctx)
| ...

...

Figure 4: A simplified fragment of the Python
ASDL grammar.1

a composite node of type stmt that represents a
class definition and therefore uses the ClassDef
constructor. In Figure 3b, on the other hand, the
root uses the Call constructor because it repre-
sents a function call.

Children are specified by named and typed
fields of the constructor, which have cardinalities
of singular, optional, or sequential.
By default, fields have singular cardinality,
meaning they correspond to exactly one child.
For instance, the ClassDef constructor has a
singular name field of type identifier.
Fields of optional cardinality are associ-



Encoder-decoder (with attention)

‣ input は属性値毎に別の bi-LSTM で encode 

‣decoder への初期値: 全て結合して線形変換 

‣入力を attend しながら、 top-down な LSTM で生成 

‣supervised attention (ヒューリスティックに alignment)
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Abstract

Tasks like code generation and semantic
parsing require mapping unstructured (or
partially structured) inputs to well-formed,
executable outputs. We introduce ab-
stract syntax networks, a modeling frame-
work for these problems. The outputs
are represented as abstract syntax trees
(ASTs) and constructed by a decoder with
a dynamically-determined modular struc-
ture paralleling the structure of the output
tree. On the benchmark HEARTHSTONE
dataset for code generation, our model ob-
tains 79.2 BLEU and 22.7% exact match
accuracy, compared to previous state-of-
the-art values of 67.1 and 6.1%. Further-
more, we perform competitively on the
ATIS, JOBS, and GEO semantic parsing
datasets with no task-specific engineering.

1 Introduction

Tasks like semantic parsing and code generation
are challenging in part because they are struc-
tured (the output must be well-formed) but not
synchronous (the output structure diverges from
the input structure).

Sequence-to-sequence models have proven ef-
fective for both tasks (Dong and Lapata, 2016;
Ling et al., 2016), using encoder-decoder frame-
works to exploit the sequential structure on both
the input and output side. Yet these approaches
do not account for much richer structural con-
straints on outputs—including well-formedness,
well-typedness, and executability. The well-
formedness case is of particular interest, since it
can readily be enforced by representing outputs as
abstract syntax trees (ASTs) (Aho et al., 2006), an
approach that can be seen as a much lighter weight

⇤Equal contribution.

name: [
'D', 'i', 'r', 'e', ' ',
'W', 'o', 'l', 'f', ' ',
'A', 'l', 'p', 'h', 'a']

cost: ['2']
type: ['Minion']
rarity: ['Common']
race: ['Beast']
class: ['Neutral']
description: [

'Adjacent', 'minions', 'have',
'+', '1', 'Attack', '.']

health: ['2']
attack: ['2']
durability: ['-1']

class DireWolfAlpha(MinionCard):
def __init__(self):

super().__init__(
"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)

def create_minion(self, player):
return Minion(2, 2, auras=[
Aura(ChangeAttack(1), MinionSelector(Adjacent()))

])

Figure 1: Example code for the “Dire Wolf Alpha”
Hearthstone card.

show me the fare from ci0 to ci1

lambda $0 e
( exists $1 ( and ( from $1 ci0 )

( to $1 ci1 )
( = ( fare $1 ) $0 ) ) )

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and ci1 tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-
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maintain recurrent state.

2 Data Representation

2.1 Abstract Syntax Trees

Our model makes use of the Abstract Syntax
Description Language (ASDL) framework (Wang
et al., 1997), which represents code fragments as
trees with typed nodes. Primitive types correspond
to atomic values, like integers or identifiers. Ac-
cordingly, primitive nodes are annotated with a
primitive type and a value of that type—for in-
stance, in Figure 3a, the identifier node stor-
ing "create minion" represents a function of
the same name.

Composite types correspond to language con-
structs, like expressions or statements. Each type
has a collection of constructors, each of which
specifies the particular language construct a node
of that type represents. Figure 4 shows con-
structors for the statement (stmt) and expression
(expr) types. The associated language constructs
include function and class definitions, return state-
ments, binary operations, and function calls.

Composite types enter syntax trees via compos-
ite nodes, annotated with a composite type and a
choice of constructor specifying how the node ex-
pands. The root node in Figure 3a, for example, is

1The full grammar can be found online on the
documentation page for the Python ast module:
https://docs.python.org/3/library/ast.
html#abstract-grammar

primitive types: identifier, object, ...

stmt
= FunctionDef(

identifier name, arg* args, stmt* body)
| ClassDef(

identifier name, expr* bases, stmt* body)
| Return(expr? value)
| ...

expr
= BinOp(expr left, operator op, expr right)
| Call(expr func, expr* args)
| Str(string s)
| Name(identifier id, expr_context ctx)
| ...

...

Figure 4: A simplified fragment of the Python
ASDL grammar.1

a composite node of type stmt that represents a
class definition and therefore uses the ClassDef
constructor. In Figure 3b, on the other hand, the
root uses the Call constructor because it repre-
sents a function call.

Children are specified by named and typed
fields of the constructor, which have cardinalities
of singular, optional, or sequential.
By default, fields have singular cardinality,
meaning they correspond to exactly one child.
For instance, the ClassDef constructor has a
singular name field of type identifier.
Fields of optional cardinality are associ-



文法によってモジュールが決まる

‣ネットワークは python 用にハードコードするのではなく  
文法を通して自動で生成 (他の文法にも適用可能)
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maintain recurrent state.

2 Data Representation

2.1 Abstract Syntax Trees

Our model makes use of the Abstract Syntax
Description Language (ASDL) framework (Wang
et al., 1997), which represents code fragments as
trees with typed nodes. Primitive types correspond
to atomic values, like integers or identifiers. Ac-
cordingly, primitive nodes are annotated with a
primitive type and a value of that type—for in-
stance, in Figure 3a, the identifier node stor-
ing "create minion" represents a function of
the same name.

Composite types correspond to language con-
structs, like expressions or statements. Each type
has a collection of constructors, each of which
specifies the particular language construct a node
of that type represents. Figure 4 shows con-
structors for the statement (stmt) and expression
(expr) types. The associated language constructs
include function and class definitions, return state-
ments, binary operations, and function calls.

Composite types enter syntax trees via compos-
ite nodes, annotated with a composite type and a
choice of constructor specifying how the node ex-
pands. The root node in Figure 3a, for example, is

1The full grammar can be found online on the
documentation page for the Python ast module:
https://docs.python.org/3/library/ast.
html#abstract-grammar

primitive types: identifier, object, ...

stmt
= FunctionDef(

identifier name, arg* args, stmt* body)
| ClassDef(

identifier name, expr* bases, stmt* body)
| Return(expr? value)
| ...

expr
= BinOp(expr left, operator op, expr right)
| Call(expr func, expr* args)
| Str(string s)
| Name(identifier id, expr_context ctx)
| ...

...

Figure 4: A simplified fragment of the Python
ASDL grammar.1

a composite node of type stmt that represents a
class definition and therefore uses the ClassDef
constructor. In Figure 3b, on the other hand, the
root uses the Call constructor because it repre-
sents a function call.

Children are specified by named and typed
fields of the constructor, which have cardinalities
of singular, optional, or sequential.
By default, fields have singular cardinality,
meaning they correspond to exactly one child.
For instance, the ClassDef constructor has a
singular name field of type identifier.
Fields of optional cardinality are associ-
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Figure 5: The module classes constituting our decoder. For brevity, we omit the cardinality modules for
singular and optional cardinalities.

Constructor field modules Each field F of a
constructor has a corresponding module whose
role is to determine the number of children asso-
ciated with that field and to propagate an updated
vertical LSTM state to them. In the case of fields
with singular cardinality, the decision and up-
date are both vacuous, as exactly one child is al-
ways generated. Hence these modules forward the
field vertical LSTM state vu,F unchanged to the
child w corresponding to F:

vw = vu,F. (1)

Fields with optional cardinality can have either
zero or one children; this choice is made using a
feedforward network applied to the vertical LSTM
state:

p(zF = 1 | vu,F) = sigmoid (fgen

F (vu,F)) . (2)

If a child is to be generated, then as in (1), the state
is propagated forward without modification.

In the case of sequential fields, a horizon-
tal LSTM is employed for both child decisions and
state updates. We refer to Figure 5c for an illus-
tration of the recurrent process. After being ini-
tialized with a transformation of the vertical state,
sF,0 = WFvu,F, the horizontal LSTM iteratively

decides whether to generate another child by ap-
plying a modified form of (2):

p (zF,i = 1 | sF,i�1

, vu,F) =

sigmoid (fgen

F (sF,i�1

, vu,F)) .

If zF,i = 0, generation stops and the process ter-
minates, as represented by the solid black circle
in Figure 5c. Otherwise, the process continues as
represented by the white circle in Figure 5c. In
that case, the horizontal state su,i�1

is combined
with the vertical state vu,F and an attention-based
context vector cF,i using a feedforward network
fupdate

F to obtain a joint context-dependent encod-
ing of the field F and the position i:

˜

eF,i = fupdate

F (vu,F, su,i�1

, cF,i).

The result is used to perform a vertical LSTM up-
date for the corresponding child wi:

vwi = LSTM

v
(vu,F, ˜eF,i).

Finally, the horizontal LSTM state is updated us-
ing the same field-position encoding, and the pro-
cess continues:

su,i = LSTM

h
(su,i�1

, ˜eF,i).

モジュール1: どの命令を選ぶか

Assign

...

stmt
ClassDef

Return

If

For

While If

(a) A composite type module choosing a constructor for
the corresponding type.

If
test

body

orelse

expr

stmt*

stmt*

(b) A constructor module computing updated vertical
LSTM states.

stmt*

stmt

(c) A constructor field module (sequential cardinal-
ity) generating children to populate the field. At each
step, the module decides whether to generate a child and
continue (white circle) or stop (black circle).

damage

...

identifier
__init__

create_minion

add_buff

change_attack
add_buff

(d) A primitive type module choosing a value from a
closed list.
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Constructor field modules Each field F of a
constructor has a corresponding module whose
role is to determine the number of children asso-
ciated with that field and to propagate an updated
vertical LSTM state to them. In the case of fields
with singular cardinality, the decision and up-
date are both vacuous, as exactly one child is al-
ways generated. Hence these modules forward the
field vertical LSTM state vu,F unchanged to the
child w corresponding to F:

vw = vu,F. (1)

Fields with optional cardinality can have either
zero or one children; this choice is made using a
feedforward network applied to the vertical LSTM
state:

p(zF = 1 | vu,F) = sigmoid (fgen

F (vu,F)) . (2)

If a child is to be generated, then as in (1), the state
is propagated forward without modification.

In the case of sequential fields, a horizon-
tal LSTM is employed for both child decisions and
state updates. We refer to Figure 5c for an illus-
tration of the recurrent process. After being ini-
tialized with a transformation of the vertical state,
sF,0 = WFvu,F, the horizontal LSTM iteratively

decides whether to generate another child by ap-
plying a modified form of (2):

p (zF,i = 1 | sF,i�1

, vu,F) =

sigmoid (fgen

F (sF,i�1

, vu,F)) .

If zF,i = 0, generation stops and the process ter-
minates, as represented by the solid black circle
in Figure 5c. Otherwise, the process continues as
represented by the white circle in Figure 5c. In
that case, the horizontal state su,i�1

is combined
with the vertical state vu,F and an attention-based
context vector cF,i using a feedforward network
fupdate

F to obtain a joint context-dependent encod-
ing of the field F and the position i:

˜

eF,i = fupdate

F (vu,F, su,i�1

, cF,i).

The result is used to perform a vertical LSTM up-
date for the corresponding child wi:

vwi = LSTM

v
(vu,F, ˜eF,i).

Finally, the horizontal LSTM state is updated us-
ing the same field-position encoding, and the pro-
cess continues:

su,i = LSTM

h
(su,i�1

, ˜eF,i).

モジュール2: 内部の生成



Semantic parsing も可能
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A Appendix

expr
= Apply(pred predicate, arg* arguments)
| Not(expr argument)
| Or(expr left, expr right)
| And(expr* arguments)

arg
= Literal(lit literal)
| Variable(var variable)

Figure 9: The Prolog-style grammar we use for the
JOBS task.

expr
= Variable(var variable)
| Entity(ent entity)
| Number(num number)
| Apply(pred predicate, expr* arguments)
| Argmax(var variable, expr domain, expr body)
| Argmin(var variable, expr domain, expr body)
| Count(var variable, expr body)
| Exists(var variable, expr body)
| Lambda(var variable, var_type type, expr body)
| Max(var variable, expr body)
| Min(var variable, expr body)
| Sum(var variable, expr domain, expr body)
| The(var variable, expr body)
| Not(expr argument)
| And(expr* arguments)
| Or(expr* arguments)
| Compare(cmp_op op, expr left, expr right)

cmp_op = Equal | LessThan | GreaterThan

Figure 10: The �-calculus grammar used by our
system.

Dataset Length Example

JOBS
9.80

22.90
what microsoft jobs do not require a bscs?
answer(company(J,’microsoft’),job(J),not((req deg(J,’bscs’))))

GEO
7.60

19.10
what is the population of the state with the largest area?
(population:i (argmax $0 (state:t $0) (area:i $0)))

ATIS
11.10
28.10

dallas to san francisco leaving after 4 in the afternoon please
(lambda $0 e (and (>(departure time $0) 1600:ti) (from $0 dallas:ci) (to $0 san francisco:ci)))

IFTTT
6.95

21.80

Turn on heater when temperature drops below 58 degree
TRIGGER: Weather - Current temperature drops below - ((Temperature (58)) (Degrees in (f)))
ACTION: WeMo Insight Switch - Turn on - ((Which switch? (””)))

Table 1: Examples of natural language descriptions and their meaning representations from four datasets.
The average length of input and output sequences is shown in the second column.

recipes from the IFTTT website1. Recipes are sim-
ple programs with exactly one trigger and one ac-
tion which users specify on the site. Whenever the
conditions of the trigger are satisfied, the action
is performed. Actions typically revolve around
home security (e.g., “turn on my lights when I ar-
rive home”), automation (e.g., “text me if the door
opens”), well-being (e.g., “remind me to drink
water if I’ve been at a bar for more than two
hours”), and so on. Triggers and actions are se-
lected from different channels (160 in total) rep-
resenting various types of services, devices (e.g.,
Android), and knowledge sources (such as ESPN
or Gmail). In the dataset, there are 552 trigger
functions from 128 channels, and 229 action func-
tions from 99 channels. We used Quirk et al.’s
(2015) original split which contains 77, 495 train-
ing, 5, 171 development, and 4, 294 test examples.
The IFTTT programs are represented as abstract
syntax trees and are paired with natural language
descriptions provided by users (see Table 1). Here,
numbers and URLs are identified.

4.2 Settings

Natural language sentences were lowercased; mis-
spellings were corrected using a dictionary based
on the Wikipedia list of common misspellings.
Words were stemmed using NLTK (Bird et al.,
2009). For IFTTT, we filtered tokens, channels
and functions which appeared less than five times
in the training set. For the other datasets, we fil-
tered input words which did not occur at least two
times in the training set, but kept all tokens in
the logical forms. Plain string matching was em-
ployed to identify augments as described in Sec-
tion 3.6. More sophisticated approaches could be
used, however we leave this future work.

Model hyper-parameters were cross-validated

1
http://www.ifttt.com

Method Accuracy
COCKTAIL (Tang and Mooney, 2001) 79.4
PRECISE (Popescu et al., 2003) 88.0
ZC05 (Zettlemoyer and Collins, 2005) 79.3
DCS+L (Liang et al., 2013) 90.7
TISP (Zhao and Huang, 2015) 85.0
SEQ2SEQ 87.1
� attention 77.9
� argument 70.7

SEQ2TREE 90.0
� attention 83.6

Table 2: Evaluation results on JOBS.

on the training set for JOBS and GEO. We used
the standard development sets for ATIS and IFTTT.
We used the RMSProp algorithm (with batch size
set to 20) to update the parameters. The smoothing
constant of RMSProp was 0.95. Gradients were
clipped at 5 to alleviate the exploding gradient
problem (Pascanu et al., 2013). Parameters were
randomly initialized from a uniform distribution
U (�0.08, 0.08). A two-layer LSTM was used for
IFTTT, while a one-layer LSTM was employed
for the other domains. The dropout rate was se-
lected from {0.2, 0.3, 0.4, 0.5}. Dimensions of
hidden vector and word embedding were selected
from {150, 200, 250}. Early stopping was used
to determine the number of epochs. Input sen-
tences were reversed before feeding into the en-
coder (Sutskever et al., 2014). We use greedy
search to generate logical forms during inference.
Notice that two decoders with shared word em-
beddings were used to predict triggers and actions
for IFTTT, and two softmax classifiers are used to
classify channels and functions.

4.3 Results

We first discuss the performance of our model on
JOBS, GEO, and ATIS, and then examine our re-
sults on IFTTT. Tables 2–4 present comparisons
against a variety of systems previously described
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文法を書いて、 logical form ⇔ 抽象構文木の変換を 
定めれば良い
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‣モデルのスコア計算が異なる 

‣提案法は LSTM の内部状態が 
モジュール固有の feed-forward  
で変化するが、彼らは一つの 
(top-down) LSTM のみ
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Abstract

We consider the problem of parsing natu-
ral language descriptions into source code
written in a general-purpose programming
language like Python. Existing data-
driven methods treat this problem as a lan-
guage generation task without considering
the underlying syntax of the target pro-
gramming language. Informed by previ-
ous work in semantic parsing, in this pa-
per we propose a novel neural architecture
powered by a grammar model to explicitly
capture the target syntax as prior knowl-
edge. Experiments find this an effective
way to scale up to generation of complex
programs from natural language descrip-
tions, achieving state-of-the-art results that
well outperform previous code generation
and semantic parsing approaches.

1 Introduction

Every programmer has experienced the situation
where they know what they want to do, but do
not have the ability to turn it into a concrete im-
plementation. For example, a Python programmer
may want to “sort my list in descending order,”
but not be able to come up with the proper syn-
tax sorted(my list, reverse=True) to real-
ize his intention. To resolve this impasse, it is
common for programmers to search the web in
natural language (NL), find an answer, and mod-
ify it into the desired form (Brandt et al., 2009,
2010). However, this is time-consuming, and
thus the software engineering literature is ripe
with methods to directly generate code from NL
descriptions, mostly with hand-engineered meth-
ods highly tailored to specific programming lan-
guages (Balzer, 1985; Little and Miller, 2009;
Gvero and Kuncak, 2015).

In parallel, the NLP community has developed
methods for data-driven semantic parsing, which
attempt to map NL to structured logical forms ex-
ecutable by computers. These logical forms can be
general-purpose meaning representations (Clark
and Curran, 2007; Banarescu et al., 2013), for-
malisms for querying knowledge bases (Tang and
Mooney, 2001; Zettlemoyer and Collins, 2005;
Berant et al., 2013) and instructions for robots or
personal assistants (Artzi and Zettlemoyer, 2013;
Quirk et al., 2015; Misra et al., 2015), among oth-
ers. While these methods have the advantage of
being learnable from data, compared to the pro-
gramming languages (PLs) in use by program-
mers, the domain-specific languages targeted by
these works have a schema and syntax that is rela-
tively simple.

Recently, Ling et al. (2016) have proposed a
data-driven code generation method for high-level,
general-purpose PLs like Python and Java. This
work treats code generation as a sequence-to-
sequence modeling problem, and introduce meth-
ods to generate words from character-level mod-
els, and copy variable names from input descrip-
tions. However, unlike most work in semantic
parsing, it does not consider the fact that code has
to be well-defined programs in the target syntax.

In this work, we propose a data-driven syntax-
based neural network model tailored for genera-
tion of general-purpose PLs like Python. In or-
der to capture the strong underlying syntax of the
PL, we define a model that transduces an NL state-
ment into an Abstract Syntax Tree (AST; Fig. 1(a),
§ 2) for the target PL. ASTs can be deterministi-
cally generated for all well-formed programs us-
ing standard parsers provided by the PL, and thus
give us a way to obtain syntax information with
minimal engineering. Once we generate an AST,
we can use deterministic generation tools to con-
vert the AST into surface code. We hypothesize

440

Expr
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expr[value]
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str(my_list)
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str(reverse) expr[value]

Name

str(True)

Action Flow
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Apply Rule

Generate Token

GenToken with Copy

(a) (b)

Input: Code:

. . .

Figure 1: (a) the Abstract Syntax Tree (AST) for the given example code. Dashed nodes denote terminals. Nodes are labeled
with time steps during which they are generated. (b) the action sequence (up to t14) used to generate the AST in (a)

torize the generation process of an AST into se-
quential application of actions of two types:

• APPLYRULE[r] applies a production rule r to
the current derivation tree;

• GENTOKEN[v] populates a variable terminal
node by appending a terminal token v.

Fig. 1(b) shows the generation process of the tar-
get AST in Fig. 1(a). Each node in Fig. 1(b) in-
dicates an action. Action nodes are connected by
solid arrows which depict the chronological order
of the action flow. The generation proceeds in
depth-first, left-to-right order (dotted arrows rep-
resent parent feeding, explained in § 4.2.1).

Formally, under our grammar model, the prob-
ability of generating an AST y is factorized as:

p(y|x) =
T�

t=1

p(at|x, a<t), (2)

where at is the action taken at time step t, and
a<t is the sequence of actions before t. We will
explain how to compute the action probabilities
p(at|·) in Eq. (2) in § 4. Put simply, the gen-
eration process begins from a root node at t0,
and proceeds by the model choosing APPLYRULE
actions to generate the overall program structure
from a closed set of grammar rules, then at leaves
of the tree corresponding to variable terminals, the
model switches to GENTOKEN actions to gener-
ate variables or constants from the open set. We
describe this process in detail below.

3.1 APPLYRULE Actions
APPLYRULE actions generate program structure,
expanding the current node (the frontier node at

time step t: nft) in a depth-first, left-to-right
traversal of the tree. Given a fixed set of produc-
tion rules, APPLYRULE chooses a rule r from the
subset that has a head matching the type of nft ,
and uses r to expand nft by appending all child
nodes specified by the selected production. As an
example, in Fig. 1(b), the rule Call �� expr. . .
expands the frontier node Call at time step t4, and
its three child nodes expr, expr* and keyword*

are added to the derivation.
APPLYRULE actions grow the derivation AST

by appending nodes. When a variable terminal
node (e.g., str) is added to the derivation and be-
comes the frontier node, the grammar model then
switches to GENTOKEN actions to populate the
variable terminal with tokens.

Unary Closure Sometimes, generating an AST
requires applying a chain of unary productions.
For instance, it takes three time steps (t9 � t11)
to generate the sub-structure expr* �� expr ��
Name �� str in Fig. 1(a). This can be effectively
reduced to one step of APPLYRULE action by tak-
ing the closure of the chain of unary productions
and merging them into a single rule: expr* ���

str. Unary closures reduce the number of actions
needed, but would potentially increase the size of
the grammar. In our experiments we tested our
model both with and without unary closures (§ 5).

3.2 GENTOKEN Actions
Once we reach a frontier node nft that corresponds
to a variable type (e.g., str), GENTOKEN actions
are used to fill this node with values. For general-
purpose PLs like Python, variables and constants
have values with one or multiple tokens. For in-
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Abstract

Tasks like code generation and semantic
parsing require mapping unstructured (or
partially structured) inputs to well-formed,
executable outputs. We introduce ab-
stract syntax networks, a modeling frame-
work for these problems. The outputs
are represented as abstract syntax trees
(ASTs) and constructed by a decoder with
a dynamically-determined modular struc-
ture paralleling the structure of the output
tree. On the benchmark HEARTHSTONE
dataset for code generation, our model ob-
tains 79.2 BLEU and 22.7% exact match
accuracy, compared to previous state-of-
the-art values of 67.1 and 6.1%. Further-
more, we perform competitively on the
ATIS, JOBS, and GEO semantic parsing
datasets with no task-specific engineering.

1 Introduction

Tasks like semantic parsing and code generation
are challenging in part because they are struc-
tured (the output must be well-formed) but not
synchronous (the output structure diverges from
the input structure).

Sequence-to-sequence models have proven ef-
fective for both tasks (Dong and Lapata, 2016;
Ling et al., 2016), using encoder-decoder frame-
works to exploit the sequential structure on both
the input and output side. Yet these approaches
do not account for much richer structural con-
straints on outputs—including well-formedness,
well-typedness, and executability. The well-
formedness case is of particular interest, since it
can readily be enforced by representing outputs as
abstract syntax trees (ASTs) (Aho et al., 2006), an
approach that can be seen as a much lighter weight

⇤Equal contribution.

name: [
'D', 'i', 'r', 'e', ' ',
'W', 'o', 'l', 'f', ' ',
'A', 'l', 'p', 'h', 'a']

cost: ['2']
type: ['Minion']
rarity: ['Common']
race: ['Beast']
class: ['Neutral']
description: [

'Adjacent', 'minions', 'have',
'+', '1', 'Attack', '.']

health: ['2']
attack: ['2']
durability: ['-1']

class DireWolfAlpha(MinionCard):
def __init__(self):

super().__init__(
"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)

def create_minion(self, player):
return Minion(2, 2, auras=[
Aura(ChangeAttack(1), MinionSelector(Adjacent()))

])

Figure 1: Example code for the “Dire Wolf Alpha”
Hearthstone card.

show me the fare from ci0 to ci1

lambda $0 e
( exists $1 ( and ( from $1 ci0 )

( to $1 ci1 )
( = ( fare $1 ) $0 ) ) )

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and ci1 tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-
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Figure 5: The module classes constituting our decoder. For brevity, we omit the cardinality modules for
singular and optional cardinalities.

Constructor field modules Each field F of a
constructor has a corresponding module whose
role is to determine the number of children asso-
ciated with that field and to propagate an updated
vertical LSTM state to them. In the case of fields
with singular cardinality, the decision and up-
date are both vacuous, as exactly one child is al-
ways generated. Hence these modules forward the
field vertical LSTM state vu,F unchanged to the
child w corresponding to F:

vw = vu,F. (1)

Fields with optional cardinality can have either
zero or one children; this choice is made using a
feedforward network applied to the vertical LSTM
state:

p(zF = 1 | vu,F) = sigmoid (fgen

F (vu,F)) . (2)

If a child is to be generated, then as in (1), the state
is propagated forward without modification.

In the case of sequential fields, a horizon-
tal LSTM is employed for both child decisions and
state updates. We refer to Figure 5c for an illus-
tration of the recurrent process. After being ini-
tialized with a transformation of the vertical state,
sF,0 = WFvu,F, the horizontal LSTM iteratively

decides whether to generate another child by ap-
plying a modified form of (2):

p (zF,i = 1 | sF,i�1

, vu,F) =

sigmoid (fgen

F (sF,i�1

, vu,F)) .

If zF,i = 0, generation stops and the process ter-
minates, as represented by the solid black circle
in Figure 5c. Otherwise, the process continues as
represented by the white circle in Figure 5c. In
that case, the horizontal state su,i�1

is combined
with the vertical state vu,F and an attention-based
context vector cF,i using a feedforward network
fupdate

F to obtain a joint context-dependent encod-
ing of the field F and the position i:

˜

eF,i = fupdate

F (vu,F, su,i�1

, cF,i).

The result is used to perform a vertical LSTM up-
date for the corresponding child wi:

vwi = LSTM

v
(vu,F, ˜eF,i).

Finally, the horizontal LSTM state is updated us-
ing the same field-position encoding, and the pro-
cess continues:

su,i = LSTM

h
(su,i�1

, ˜eF,i).

ATIS GEO JOBS

System Accuracy System Accuracy System Accuracy
ZH15 84.2 ZH15 88.9 ZH15 85.0
ZC07 84.6 KCAZ13 89.0 PEK03 88.0
WKZ14 91.3 WKZ14 90.4 LJK13 90.7
DL16 84.6 DL16 87.1 DL16 90.0
ASN 85.3 ASN 85.7 ASN 91.4

+ SUPATT 85.9 + SUPATT 87.1 + SUPATT 92.9

Table 1: Accuracies for the semantic parsing tasks. ASN denotes our abstract syntax network framework.
SUPATT refers to the supervised attention mentioned in Section 3.4.

System Accuracy BLEU F1
NEAREST 3.0 65.0 65.7
LPN 6.1 67.1 –
ASN 18.2 77.6 72.4

+ SUPATT 22.7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-
PATT refers to the system with supervised atten-
tion mentioned in Section 3.4. LPN refers to the
system of Ling et al. (2016). Our nearest neigh-
bor baseline NEAREST follows that of Ling et al.
(2016), though it performs somewhat better; its
nonzero exact match number stems from spurious
repetition in the data.

a new state-of-the-art accuracy of 91.4% on the
JOBS dataset, and this number improves to 92.9%
when supervised attention is added. On the ATIS
and GEO datasets, we respectively exceed and
match the results of Dong and Lapata (2016).
However, these fall short of the previous best re-
sults of 91.3% and 90.4%, respectively, obtained
by Wang et al. (2014). This difference may be par-
tially attributable to the use of typing information
or rich lexicons in most previous semantic pars-
ing approaches (Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2013; Wang et al., 2014; Zhao
and Huang, 2015).

On the HEARTHSTONE dataset, we improve
significantly over the initial results of Ling et al.
(2016) across all evaluation metrics, as shown in
Table 2. On the more stringent exact match metric,
we improve from 6.1% to 18.2%, and on token-
level BLEU, we improve from 67.1 to 77.6. When
supervised attention is added, we obtain an ad-
ditional increase of several points on each scale,
achieving peak results of 22.7% accuracy and 79.2
BLEU.

class IronbarkProtector(MinionCard):
def __init__(self):
super().__init__(

'Ironbark Protector', 8,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

8, 8, taunt=True)

Figure 6: Cards with minimal descriptions exhibit
a uniform structure that our system almost always
predicts correctly, as in this instance.

class ManaWyrm(MinionCard):
def __init__(self):
super().__init__(

'Mana Wyrm', 1,
CHARACTER_CLASS.MAGE,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

1, 3, effects=[
Effect(

SpellCast(),
ActionTag(

Give(ChangeAttack(1)),
SelfSelector()))

])

Figure 7: For many cards with moderately com-
plex descriptions, the implementation follows a
functional style that seems to suit our modeling
strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion

As the examples in Figures 6-8 show, classes in
the HEARTHSTONE dataset share a great deal of
common structure. As a result, in the simplest
cases, such as in Figure 6, generating the code is
simply a matter of matching the overall structure
and plugging in the correct values in the initializer
and a few other places. In such cases, our sys-
tem generally predicts the correct code, with the
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DL16 84.6 DL16 87.1 DL16 90.0
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System Accuracy BLEU F1
NEAREST 3.0 65.0 65.7
LPN 6.1 67.1 –
ASN 18.2 77.6 72.4

+ SUPATT 22.7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-
PATT refers to the system with supervised atten-
tion mentioned in Section 3.4. LPN refers to the
system of Ling et al. (2016). Our nearest neigh-
bor baseline NEAREST follows that of Ling et al.
(2016), though it performs somewhat better; its
nonzero exact match number stems from spurious
repetition in the data.

a new state-of-the-art accuracy of 91.4% on the
JOBS dataset, and this number improves to 92.9%
when supervised attention is added. On the ATIS
and GEO datasets, we respectively exceed and
match the results of Dong and Lapata (2016).
However, these fall short of the previous best re-
sults of 91.3% and 90.4%, respectively, obtained
by Wang et al. (2014). This difference may be par-
tially attributable to the use of typing information
or rich lexicons in most previous semantic pars-
ing approaches (Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2013; Wang et al., 2014; Zhao
and Huang, 2015).

On the HEARTHSTONE dataset, we improve
significantly over the initial results of Ling et al.
(2016) across all evaluation metrics, as shown in
Table 2. On the more stringent exact match metric,
we improve from 6.1% to 18.2%, and on token-
level BLEU, we improve from 67.1 to 77.6. When
supervised attention is added, we obtain an ad-
ditional increase of several points on each scale,
achieving peak results of 22.7% accuracy and 79.2
BLEU.

class IronbarkProtector(MinionCard):
def __init__(self):
super().__init__(

'Ironbark Protector', 8,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

8, 8, taunt=True)

Figure 6: Cards with minimal descriptions exhibit
a uniform structure that our system almost always
predicts correctly, as in this instance.

class ManaWyrm(MinionCard):
def __init__(self):
super().__init__(

'Mana Wyrm', 1,
CHARACTER_CLASS.MAGE,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

1, 3, effects=[
Effect(

SpellCast(),
ActionTag(

Give(ChangeAttack(1)),
SelfSelector()))

])

Figure 7: For many cards with moderately com-
plex descriptions, the implementation follows a
functional style that seems to suit our modeling
strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion

As the examples in Figures 6-8 show, classes in
the HEARTHSTONE dataset share a great deal of
common structure. As a result, in the simplest
cases, such as in Figure 6, generating the code is
simply a matter of matching the overall structure
and plugging in the correct values in the initializer
and a few other places. In such cases, our sys-
tem generally predicts the correct code, with the

App. Users of the App write simple instruc-
tions (e.g., If Instagram.AnyNewPhotoByYou

Then Dropbox.AddFileFromURL) with NL de-
scriptions (e.g., “Autosave your Instagram photos
to Dropbox”). Each statement inside the If or
Then clause consists of a channel (e.g., Dropbox)
and a function (e.g., AddFileFromURL)7. This
simple structure results in much more concise
ASTs (7 nodes on average). Because all examples
are created by ordinary Apps users, the dataset
is highly noisy, with input NL very loosely con-
nected to target ASTs. The authors thus provide a
high-quality filtered test set, where each example
is verified by at least three annotators. We use this
set for evaluation. Also note IFTTT’s grammar has
more productions (Tab. 2), but this does not imply
that its grammar is more complex. This is because
for HS and DJANGO terminal tokens are generated
by GENTOKEN actions, but for IFTTT, all the code
is generated directly by APPLYRULE actions.
Metrics As is standard in semantic parsing, we
measure accuracy, the fraction of correctly gen-
erated examples. However, because generating an
exact match for complex code structures is non-
trivial, we follow Ling et al. (2016), and use token-
level BLEU-4 with as a secondary metric, defined
as the averaged BLEU scores over all examples.8

5.2 Setup
Preprocessing All input descriptions are tok-
enized using NLTK. We perform simple canoni-
calization for DJANGO, such as replacing quoted
strings in the inputs with place holders. See sup-
plementary materials for details. We extract unary
closures whose frequency is larger than a thresh-
old k (k = 30 for HS and 50 for DJANGO).
Configuration The size of all embeddings is 128,
except for node type embeddings, which is 64.
The dimensions of RNN states and hidden layers
are 256 and 50, respectively. Since our datasets are
relatively small for a data-hungry neural model,
we impose strong regularization using recurrent

7Like Beltagy and Quirk (2016), we strip function param-
eters since they are mostly specific to users.

8These two metrics are not ideal: accuracy only measures
exact match and thus lacks the ability to give credit to seman-
tically correct code that is different from the reference, while
it is not clear whether BLEU provides an appropriate proxy
for measuring semantics in the code generation task. A more
intriguing metric would be directly measuring semantic/func-
tional code equivalence, for which we present a pilot study
at the end of this section (cf. Error Analysis). We leave ex-
ploring more sophisticated metrics (e.g. based on static code
analysis) as future work.

HS DJANGO

ACC BLEU ACC BLEU
Retrieval System† 0.0 62.5 14.7 18.6
Phrasal Statistical MT† 0.0 34.1 31.5 47.6
Hierarchical Statistical MT† 0.0 43.2 9.5 35.9

NMT 1.5 60.4 45.1 63.4
SEQ2TREE 1.5 53.4 28.9 44.6
SEQ2TREE–UNK 13.6 62.8 39.4 58.2
LPN† 4.5 65.6 62.3 77.6
Our system 16.2 75.8 71.6 84.5

Ablation Study
– frontier embed. 16.7 75.8 70.7 83.8
– parent feed. 10.6 75.7 71.5 84.3
– copy terminals 3.0 65.7 32.3 61.7
+ unary closure – 70.3 83.3
– unary closure 10.1 74.8 –

Table 3: Results on two Python code generation tasks.
†Results previously reported in Ling et al. (2016).

dropouts (Gal and Ghahramani, 2016) for all re-
current networks, together with standard dropout
layers added to the inputs and outputs of the de-
coder RNN. We validate the dropout probability
from {0, 0.2, 0.3, 0.4}. For decoding, we use a
beam size of 15.

5.3 Results
Evaluation results for Python code generation
tasks are listed in Tab. 3. Numbers for our sys-
tems are averaged over three runs. We compare
primarily with two approaches: (1) Latent Pre-
dictor Network (LPN), a state-of-the-art sequence-
to-sequence code generation model (Ling et al.,
2016), and (2) SEQ2TREE, a neural semantic pars-
ing model (Dong and Lapata, 2016). SEQ2TREE
generates trees one node at a time, and the tar-
get grammar is not explicitly modeled a priori,
but implicitly learned from data. We test both
the original SEQ2TREE model released by the au-
thors and our revised one (SEQ2TREE–UNK) that
uses unknown word replacement to handle rare
words (Luong et al., 2015). For completeness,
we also compare with a strong neural machine
translation (NMT) system (Neubig, 2015) using a
standard encoder-decoder architecture with atten-
tion and unknown word replacement9, and include
numbers from other baselines used in Ling et al.
(2016). On the HS dataset, which has relatively
large ASTs, we use unary closure for our model
and SEQ2TREE, and for DJANGO we do not.

9For NMT, we also attempted to find the best-scoring syn-
tactically correct predictions in the size-5 beam, but this did
not yield a significant improvement over the NMT results in
Tab. 3.
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ATIS GEO JOBS

System Accuracy System Accuracy System Accuracy
ZH15 84.2 ZH15 88.9 ZH15 85.0
ZC07 84.6 KCAZ13 89.0 PEK03 88.0
WKZ14 91.3 WKZ14 90.4 LJK13 90.7
DL16 84.6 DL16 87.1 DL16 90.0
ASN 85.3 ASN 85.7 ASN 91.4

+ SUPATT 85.9 + SUPATT 87.1 + SUPATT 92.9

Table 1: Accuracies for the semantic parsing tasks. ASN denotes our abstract syntax network framework.
SUPATT refers to the supervised attention mentioned in Section 3.4.

System Accuracy BLEU F1
NEAREST 3.0 65.0 65.7
LPN 6.1 67.1 –
ASN 18.2 77.6 72.4

+ SUPATT 22.7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-
PATT refers to the system with supervised atten-
tion mentioned in Section 3.4. LPN refers to the
system of Ling et al. (2016). Our nearest neigh-
bor baseline NEAREST follows that of Ling et al.
(2016), though it performs somewhat better; its
nonzero exact match number stems from spurious
repetition in the data.

a new state-of-the-art accuracy of 91.4% on the
JOBS dataset, and this number improves to 92.9%
when supervised attention is added. On the ATIS
and GEO datasets, we respectively exceed and
match the results of Dong and Lapata (2016).
However, these fall short of the previous best re-
sults of 91.3% and 90.4%, respectively, obtained
by Wang et al. (2014). This difference may be par-
tially attributable to the use of typing information
or rich lexicons in most previous semantic pars-
ing approaches (Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2013; Wang et al., 2014; Zhao
and Huang, 2015).

On the HEARTHSTONE dataset, we improve
significantly over the initial results of Ling et al.
(2016) across all evaluation metrics, as shown in
Table 2. On the more stringent exact match metric,
we improve from 6.1% to 18.2%, and on token-
level BLEU, we improve from 67.1 to 77.6. When
supervised attention is added, we obtain an ad-
ditional increase of several points on each scale,
achieving peak results of 22.7% accuracy and 79.2
BLEU.

class IronbarkProtector(MinionCard):
def __init__(self):
super().__init__(

'Ironbark Protector', 8,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

8, 8, taunt=True)

Figure 6: Cards with minimal descriptions exhibit
a uniform structure that our system almost always
predicts correctly, as in this instance.

class ManaWyrm(MinionCard):
def __init__(self):
super().__init__(

'Mana Wyrm', 1,
CHARACTER_CLASS.MAGE,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

1, 3, effects=[
Effect(

SpellCast(),
ActionTag(

Give(ChangeAttack(1)),
SelfSelector()))

])

Figure 7: For many cards with moderately com-
plex descriptions, the implementation follows a
functional style that seems to suit our modeling
strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion

As the examples in Figures 6-8 show, classes in
the HEARTHSTONE dataset share a great deal of
common structure. As a result, in the simplest
cases, such as in Figure 6, generating the code is
simply a matter of matching the overall structure
and plugging in the correct values in the initializer
and a few other places. In such cases, our sys-
tem generally predicts the correct code, with the
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class MultiShot(SpellCard):
def __init__(self):

super().__init__(
'Multi-Shot', 4,
CHARACTER_CLASS.HUNTER,
CARD_RARITY.FREE)

def use(self, player, game):
super().use(player, game)
targets = copy.copy(

game.other_player.minions)
for i in range(0, 2):
target = game.random_choice(targets)
targets.remove(target)
target.damage(

player.effective_spell_damage(3),
self)

def can_use(self, player, game):
return (
super().can_use(player, game) and

(len(game.other_player.minions) >= 2))

class MultiShot(SpellCard):
def __init__(self):
super().__init__(

'Multi-Shot', 4,
CHARACTER_CLASS.HUNTER,
CARD_RARITY.FREE)

def use(self, player, game):
super().use(player, game)
minions = copy.copy(

game.other_player.minions)
for i in range(0, 3):

minion = game.random_choice(minions)
minions.remove(minion)

def can_use(self, player, game):
return (

super().can_use(player, game) and

len(game.other_player.minions) >= 3)

Figure 8: Cards with nontrivial logic expressed in an imperative style are the most challenging for our
system. In this example, our prediction comes close to the gold code, but misses an important statement
in addition to making a few other minor errors. (Left) gold code; (right) predicted code.

exception of instances in which strings are incor-
rectly transduced. Introducing a dedicated copy-
ing mechanism like the one used by Ling et al.
(2016) or more specialized machinery for string
transduction may alleviate this latter problem.

The next simplest category of card-code pairs
consists of those in which the card’s logic is
mostly implemented via nested function calls.
Figure 7 illustrates a typical case, in which the
card’s effect is triggered by a game event (a spell
being cast) and both the trigger and the effect are
described by arguments to an Effect construc-
tor. Our system usually also performs well on in-
stances like these, apart from idiosyncratic errors
that can take the form of under- or overgeneration
or simply substitution of incorrect predicates.

Cards whose code includes complex logic ex-
pressed in an imperative style, as in Figure 8, pose
the greatest challenge for our system. Factors like
variable naming, nontrivial control flow, and in-
terleaving of code predictable from the descrip-
tion with code required due to the conventions of
the library combine to make the code for these
cards difficult to generate. In some instances (as
in the figure), our system is nonetheless able to
synthesize a close approximation. However, in the
most complex cases, the predictions deviate sig-
nificantly from the correct implementation.

In addition to the specific errors our system
makes, some larger issues remain unresolved. Ex-
isting evaluation metrics only approximate the
actual metric of interest: functional equiva-
lence. Modifications of BLEU, tree F1, and exact

match that canonicalize the code—for example,
by anonymizing all variables—may prove more
meaningful. Direct evaluation of functional equiv-
alence is of course impossible in general (Sipser,
2006), and practically challenging even for the
HEARTHSTONE dataset because it requires inte-
grating with the game engine.

Existing work also does not attempt to enforce
semantic coherence in the output. Long-distance
semantic dependencies, between occurrences of a
single variable for example, in particular are not
modeled. Nor is well-typedness or executability.
Overcoming these evaluation and modeling issues
remains an important open problem.

5 Conclusion

ASNs provide a modular encoder-decoder archi-
tecture that can readily accommodate a variety of
tasks with structured output spaces. They are par-
ticularly applicable in the presence of recursive
decompositions, where they can provide a simple
decoding process that closely parallels the inher-
ent structure of the outputs. Our results demon-
strate their promise for tree prediction tasks, and
we believe their application to more general out-
put structures is an interesting avenue for future
work.
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gold pred

命令中の数字の扱いが逆になっている (neural っぽい？)

評価にも問題 (e.g., 変数名の不一致)



おわりに

‣Encoder-decoder で decode 対象が複雑な構造 (木, グラフ) 
を持っている時に対象に対する知識を組み込む自然な方法 

• 色々な拡張はできそう (AMR など) 

• Encoder-decoder AMR は alignment の問題を回避できる 

‣完全な code-generation には程遠い 

• well-typedness, executability 

• Semantic coherence (離れた場所での変数名, etc)
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