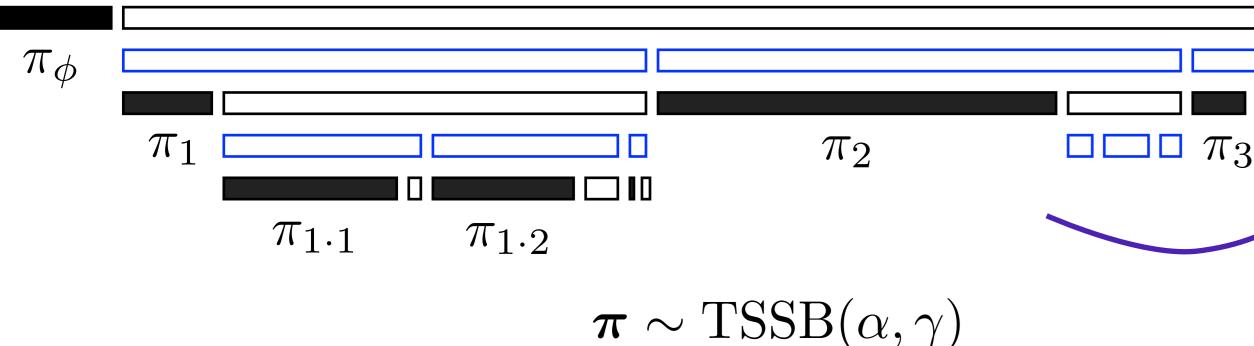
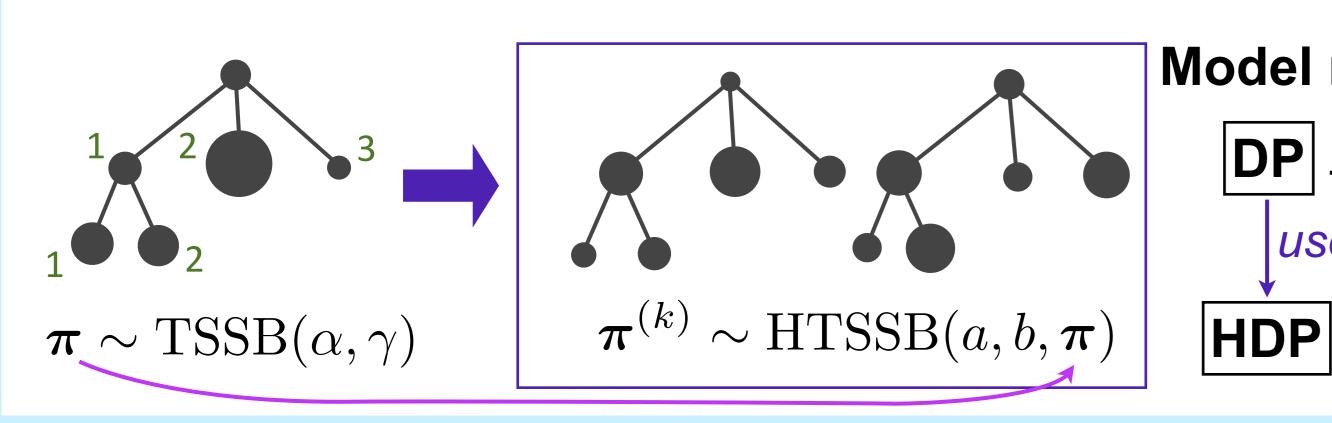
Hierarchical Tree-Structured Stick-Breaking Priors


Hiroshi Noji^{1,3}

Overview

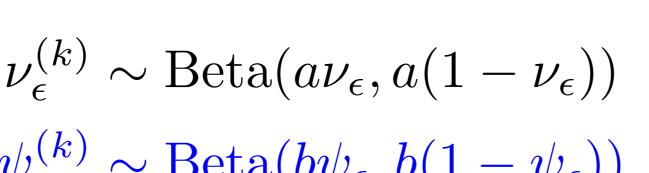
- Current models ignore the relationships between hidden states • e.g., the states of HMM or PCFG are exclusive
- Propose the general nonparametric prior which induces the latent hierarchy between the hidden states
- Construct a *HMM on a tree*, and a tree-structured topic model
- Topic model works, but the HMM currently fails \Rightarrow why?

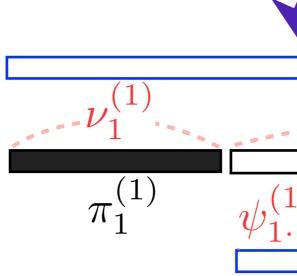
Tree-Structured Stick-Breaking [1]


Partitions a unit interval hierarchically to get a measure on a tree

- The model consists of two kinds of stick-breakings:
- ν -break selects stop or pass at the node: $\nu_{\epsilon} \sim \text{Beta}(1, \alpha)$
- ψ -break selects the child direction: $\psi_{\epsilon} \sim \text{Beta}(1, \gamma)$
- Example: $\pi_{1.2} = (1 \nu_{\phi}) \cdot \psi_1 \cdot (1 \nu_1) \cdot (1 \psi_{1.1}) \cdot \psi_{1.2} \cdot \nu_{1.2}$
- Generalization of the Dirichlet process on the tree
- Problem:
- Each draws from this prior creates a different tree structure
- The same problem when extending the Dirichlet process to the grouped data, e.g., HDP-HMM ⇒ *define another type of hierarchy!*

Hierarchical TSSB: core idea

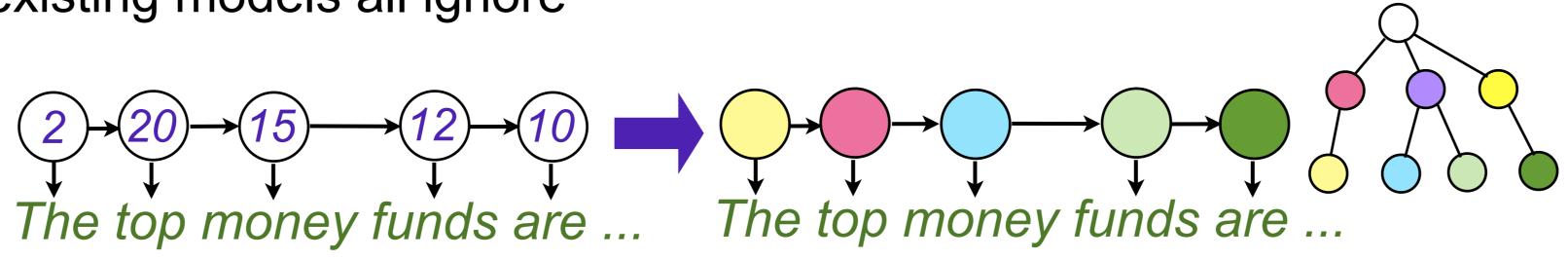

Use a draw from the TSSB as a base measure of another draw



Daichi Mochihashi^{2,3}

Hierarchical ν - and ψ -breaks

Stick lengths of base measure are used as a prior in each position $\nu_{\epsilon}^{(k)} \sim \text{Beta}(a\nu_{\epsilon}, a(1-\nu_{\epsilon}))$ $\psi_{\epsilon}^{(k)} \sim \text{Beta}(b\psi_{\epsilon}, b(1-\psi_{\epsilon}))$ $1-\psi_{1.1}$ $\psi_{1,1}^{(2)}$ $-\psi_{1\cdot 1}^{(1)}$

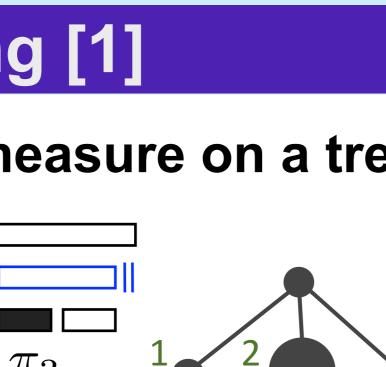

Difference between this ψ -breaks and the HDP

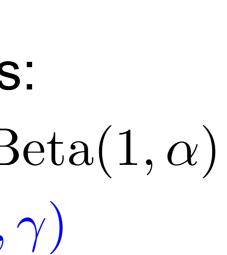
- If we model this branching process by HDP,
- In HDP, the ψ -break is: $\psi_{\epsilon \cdot i}^{(k)} \sim \text{Beta}(b\varphi_{\epsilon \cdot i}, b(1 \sum_{j=1}^{i} \varphi_{\epsilon \cdot j}))$
- Recently proposed nestedCRF [2] is based on HDP; ours is not

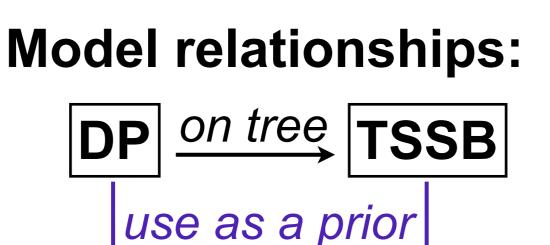
Motivation: We want to induce the latent hierarchy of states

• In natural language processing, HMM or other probablistic grammar models are used to induce word categories for dimentionality reduction • The word categories should comprise a hierarchical structure, which

existing models all ignore

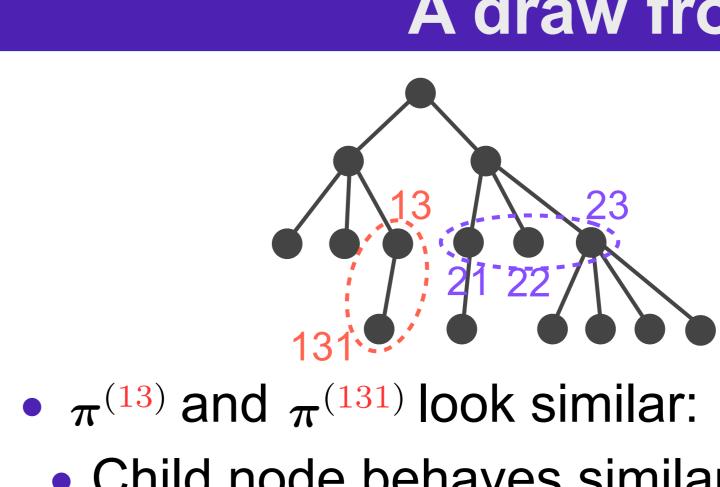

- Scientific question: How words are categorized in a tree?
- Engineering: the depth of the predicted state corresponds to the confidence of that state


Assumption: Two related categories are close to each other


• Each node (category) has a transition distribution to other nodes

Generative process

- . Sample $\pi \sim TSSB(\alpha, \gamma)$ to define the global tree structure
- 2. On each node $\epsilon \cdot i$, sample $\pi^{(\epsilon \cdot i)} \sim \text{HTSSB}(a, b, \pi^{(\epsilon)})$


HTSSB

Yusuke Miyao^{1,3}

• Let $\varphi_{\epsilon i}^{(k)} = \psi_{\epsilon i}^{(k)} \prod_{j=1}^{i-1} (1 - \psi_{\epsilon j}^{(k)})$ be the local branching prob. to *i*-th child

 $(\varphi_{\epsilon,1}^{(k)}, \varphi_{\epsilon,2}^{(k)}, \cdots) \sim \text{Dir}(b\varphi_{\epsilon,1}, b\varphi_{\epsilon,2}, \cdots)$ holds, but in our model, it doesn't

HMM on a Tree

Gibbs sampler similar to the HDP-HMM:

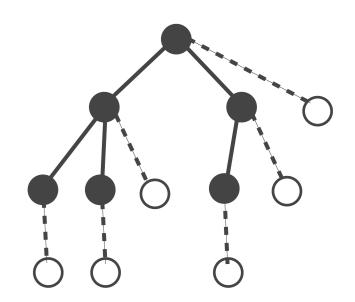
 $p(z_t | \mathbf{z}^{-t}, \mathbf{w}) \propto p(z_t | z_{t-1}) p(w | z_t) p(z_{t+1} | z_t)$

 $\boldsymbol{\pi}^{(\epsilon \cdot i)} \sim \mathrm{HTSSB}(a, b, \boldsymbol{\pi}^{(\epsilon)}); \ \boldsymbol{\pi}^{(\epsilon \cdot i \cdot j)} \sim \mathrm{HTSSB}(a, b, \boldsymbol{\pi}^{(\epsilon \cdot i)}); \ \cdots$

Tree-structured Topic Modeling: $\pi^{(d)} \sim \text{HTSSB}(a, b, \pi)$ • It is easier than the HMM, bounds so we can check the correctness of the model and sampler population solutions • From the NIPS corpus, we got tuning pruning decoding membrace neural reasonable subtrees \Rightarrow categorization | channel

[1] R.P. Adams, Z. Ghahramani, and Michael I Jordan. Tree-structured stick breaking for hierarchical data. In NIPS 2010 [2] Amr Ahmed, Liangjie Hong, and Alexander Smola. Nested chinese restaurant franchise process: Applications to user tracking and document modeling. In Proc. of ICML 2013

1. National Institute of Informatics, Tokyo 2. The Institute of Statistical Mathematics, Tokyo 3. Graduate University for Advanced Studies


A draw from the HMM prior

 Child node behaves similarly to the parent • $\pi_{21}^{(\epsilon)}, \pi_{22}^{(\epsilon)}, \text{ and } \pi_{23}^{(\epsilon)}$ are similar in many ϵ :

• Positive correlations in atoms in each distribution

Inference

To grow the tree, we place dummy nodes (like the dummy state of HDP-HMM)

(i, j): transition prob. from i to j

Currently, this sampler for HMM doesn't work well

• Similar word categories often appear in very different positions • because the effect of an ancestor diminishes in deeper nodes:

Discussion

• For HMM to work, we need to solve several problems: • A blocked sampler, which enable larger moves, might be required Theoretical analysis of the behavior with deeper hierarchy • Interesting applications of Tree-HMM in other domains?

Reference