Improvements to The Bayesian Topic N-gram Models

Hiroshi Noji 1,3

Daichi Mochihashi 2,3

Yusuke Miyao^{1,3}

 $\cdots v v w \cdots$

 $\cdots v v w \cdots$

 $\cdots w \ v \ w \cdots$

 $\cdots v v w \cdots$

 $\cdots w \ v \ w \cdots$

- 1. National Institute of Informatics, Tokyo
- 2. The Institute of Statistical Mathematics, Tokyo
- 3. Graduate University for Advanced Studies

Overview

The predictions of n-gram language models are very local

- Problems of the previous n-gram + topic models:
- Prediction get much sparse with higher order n-grams
- Inference (local Gibbs) is not very efficient
- Resolve these with hierarchical prior + blocked sampling

Basic model (Wallach' 06)

Problem of the naive Gibbs sampler

A table is connected to a customer on the parent restaurant

This customer will never move unless a table is removed in its child restaurants ⇒ slow mixing especially with higher-order!

Proposed blocked sampler

- Select a pivot table on a internal restaurant
- 2. Reconstruct parent-child relations randomly
- 3. Move the block with holding the seating arrangement (the posterior can be calculated in a closed form) $\cdots v v w \cdots$

Change many word topics across documents

Effects of the blocked sampler

- Use Wallach's model for simplicity
- It can be applied to our extended models with a little effort

Blocked moves lead much faster convergences

Perplexity results

- BNC (10M) with 4-gram models
- # topics=100 (not so sensitive)
- Our models are normalization-free:
- much faster prediction than rescaling methods

	Hierarchical Switching	129.0 125.5
	Unigram rescaling	130.3
•	Wallach + block	133.1
	Wallach	140.4
	HPYLM (no topic)	169.2

- Conclusion to the model design:
- Flat structure between the global and topics is better than *hierarchical structure* ⇒ *but why?*

Posterior inspections

- Switching assigns only some part of words topics
 - there has been much recent work on measuring image statistics learning probability distributions on images. we observe the mapping from images to statistics is many-to-one and show it can be quantified by a phase space factor
- lighter words are assigned the global model (topic 0)
- might led to more accurate topic prediction
- Hierarchical also learns differences of contexts, but all words are assigned topics

	λ_h	$\mid h \mid$
·	0.0-0.1	in spite, were unable, a sort, on behalf, . regardless
	0.5 - 0.6	assumed it, rand mines, plans was, other excersises
	0.9 - 1.0	that the, the existing, the new, their own, and spatial

References

Hanna M. Wallach. 2006. Topic modeling: beyond bag- of-words. In Proc of ICML '06, pages 977–984. Frank Wood and Yee Whye Teh. 2009. A hierarchical nonparametric Bayesian approach to statistical language model domain adaptation. In Proc of AISTATS, volume 12.

Hierarchical priors for ease of sparseness

- Motivation
- We don't want to assign all n-grams topics equally local context candidates
- ... in order \Rightarrow to, that not require topics ... would like \Rightarrow you, to ... state of ⇒ Washington, the ` > require topics ... the new \Rightarrow york, algorithm
- Comparing two models encoding this difference
- Hierarchical: the global model is used as a prior
- Switching: two models are switched

-Switching lambda hierarchies Property the new, of new both require topics Share statistical strengths with hierarchical Betas $\lambda_{\textit{the new}} \sim \operatorname{Beta}(\gamma \lambda_{\textit{new}}, \gamma (1 - \lambda_{\textit{new}}))$ λ of new \sim $\mathrm{Beta}(\gamma\lambda_{\mathit{new}},\gamma(1-\lambda_{\mathit{new}}))$