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Effects of the blocked sampler

Problem of the naive Gibbs sampler

e The predictions of n-gram language models are very /ocal Word distributions Chinese restaurant process
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= use topic models? 4-gram

e Problems of the previous n-gram + topic models:
e Prediction get much sparse with higher order n-grams
e Inference (local Gibbs) is not very efficient

o Resolve these with hierarchical prior + blocked sampling Proposed blocked sampler

Basic model (Wallach’ 06)
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A table is connected to a customer.on the parent restaurant
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2. Reconstruct parent-child relations randomly

-__- 0.G. +0,G? +05¢°  (the posterior can be calculated in a closed form)
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Change many word topics across documents

Hierarchical priors for ease of sparseness

e Motivation Hierarchical Switching lambda hierarchies —

@ @ e Property
’ ’ e the new, of new both
require topics

e Share statistical strengths
with hierarchical Betas

e \We don't want to assign all n-grams topics equally

local context candidates
.. In order = to, that
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e Switching: two models are switched

This customer will never move unless a table Is removed In its
child restaurants = slow mixing especially with higher-order!
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e Use Wallach’'s model for simplicity

e |t can be applied to our extended models with a little effort
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with blocked sampler

Blocked moves lead much faster convergences

Perplexity results

e BNC (10M) with 4-gram models

o # topics=100 (not so sensitive)

e Our models are normalization-free:

e much faster prediction than

rescaling methods

e Conclusion to the model design:

HPYLM (no topic) | 169.2
Wallach 140.4
Wallach + block | 133.1
Unigram rescaling| 130.3
Hierarchical 129.0
Switching 125.5

o [lat structure between the global and topics
IS better than hierarchical structure = but why?

Posterior inspections

e Switching assigns only some part of words topics

measuring 1mage statistics
learning probability distributions ¢ images = we

the mapping 1mages ' statistics

many-to-one

phase space factor

e lighter words are assigned the global model (topic 0)
e might led to more accurate topic prediction
e Hierarchical also learns differences of contexts, but all words

are assigned topics
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