A Framework for an Easy Natural Language Processing Pipeline

Hiroshi Noji Nara Institute of Information Science and Technology (NAIST)
Yusuke Miyao National Institute of Informatics (NIl)

https://github.com/mynlp/jigg or Google “jigg nlp”

Quick start

No complex installation needed

$ wget https://github.com/mynlp/jigg/releases/download/v-0.6.1/j19g-0.6.1.tar.gz
$ tar xzf jigg-0.6.1.tar.gz && cd jigg-0.6.1 && ./script/download_corenlp_models.sh

Combining Berkeley parser with Stanford CoreNLP pipeline in one-line

$ echo “Jigg eats raw sentences. Like this.” | java —-cp “*” jigg.pipeline.Pipeline \
—annotators “corenlp[tokenize,ssplit],berkeleyparser,corenlp[lemma,ner]” > output.xml

' CoreNLP

[Raw text | —» Tokenize = splitting === POS tagging == Parsing ==# Lemmatize == NER ==(Result XML

Runs Stanford NER using POS tags by Berkeley parser

Jigg is a lightweight integrated framework for NLP pipelines

Motivations: - —
Tokenization/sentence splitting
- Building NLP pipelines combining several tools is painful as CoreNLP <::>
the input/output formats often vary across tools '

ex) CoreNLP = own XML; Google SyntaxNet = CoNLL format

Input: Raw text

<L

la XML object
POS tagging Scala objec

- Stanford CoreNLP is a nice pipeline toolkit, but is less flexible;
tools outside CoreNLP are not easily integrated into pipelines

<sentences>
<sentence id="“s0Q">
<tokens>

CoreNLP SyntaxNet Berkeley parser
(Stanford tagger)

<token form=“The” pos=“DT">

- Jigg provides a flexible platform integrating various NLP tools i;;keg» |
<depenaencles>

N <<::::::> <}éépendencies>
ew system <Parseé> < Added by parser

</parse>
</sentence>

Dependency parsing
CoreNLP SyntaxNet

(Stanford parser)

Features:

- (Almost) the same interface to Stanford CoreNLP
- Customizable with Java properties file or command line; callable in Java

</sentences>

Parsing
* Including CoreNLP itself in default (can be used transparently)

CoreNLP Berkeley parser New system
- Easy to extend: New pipeline component (annotator) can (Stanford parser)

be added by writing a Scala/Java wrapper to the software

NER/SRL/Coreference ...

- Each annotator wraps a system (software); annotates on Scala XML
 One can replace some component (e.g., parser) with a

- Sentence/document-level parallelization: Most tools including
Berkeley parser runs in parallel in default

Internal meChanism / TIpS Correctness of the pipeline is checked before annotation:

. * - tat “berkel , pl[l ” 'will fail
Each annotator is implemented as a Scala (or Java) class: annotators “berke _eyparser_ Corer_] p(Lemmal .a because |
berkeleyparser requires the input is already tokenized and ssplitted

package jigg.pipeline

. You can extend Jigg by implementing new annotator class:
import scala.xml._

class BerkeleyParserAnnotator extends SentenceAnnotator { * If jigg.pipeline.MSTParserAnnotator IS In the pass, this can be called
val parser: CoarseToFineMaxRuleParser = ... IJy —customAnnotatorClass.mst jigg.pipeline.MSTParserAnnotator
override def newSentenceAnnotation(sentence: Node): Node = { o _ _ |
// Use parser to get parse; add it to sentence XML (Node) If you distribute your annotator via maven, a third person can use it by
} customizing Jigg with build.sbt (or pom.xml):
override def|requires = Set(Tokenize, Ssplit) Lib . ; _ - Seq
override def|requirementsSatisfied = Set(P0S, Parse) 1"rary <pen enc1es"+:—".§q 0o n .
com.github.mynlp" % "jigg" % "0.6.1",
b These fields define dependencies between annotators (as in CoreNLP) ""com.github.mynlp" % "jigg-mstparser" % "0.1-SNAPSHOT")

- Jigg is inspired by CoreNLP in many aspects; the largest difference is in annotated objects (CoreMap in CoreNLP vs. Scala XML in Jigg)

- This design gives us more flexibility for the supportable annotators (e.g., supporting CCG parser in CoreNLP seems less obvious)
- Try Jigg! And give us feedback on Github issue!

