
Jigg
A Framework for an Easy Natural Language Processing Pipeline

Hiroshi Noji Nara Institute of Information Science and Technology (NAIST)
Yusuke Miyao National Institute of Informatics (NII)

https://github.com/mynlp/jigg or Google “jigg nlp”

Quick start
No complex installation needed

$ wget https://github.com/mynlp/jigg/releases/download/v-0.6.1/jigg-0.6.1.tar.gz
$ tar xzf jigg-0.6.1.tar.gz && cd jigg-0.6.1 && ./script/download_corenlp_models.sh

Combining Berkeley parser with Stanford CoreNLP pipeline in one-line

$ echo “Jigg eats raw sentences. Like this.” | java -cp “*” jigg.pipeline.Pipeline \
 -annotators “corenlp[tokenize,ssplit],berkeleyparser,corenlp[lemma,ner]” > output.xml

Tokenize
Sentence
splitting POS tagging Parsing Lemmatize NER

Runs Stanford NER using POS tags by Berkeley parser

Raw text Result XML

CoreNLP Berkeley parser CoreNLP

Jigg is a lightweight integrated framework for NLP pipelines

・Building NLP pipelines combining several tools is painful as 
 the input/output formats often vary across tools

Motivations:

ex) CoreNLP ⇒ own XML; Google SyntaxNet ⇒ CoNLL format

・Stanford CoreNLP is a nice pipeline toolkit, but is less flexible; 
 tools outside CoreNLP are not easily integrated into pipelines

・Jigg provides a flexible platform integrating various NLP tools

Features:

・Sentence/document-level parallelization: Most tools including  
 Berkeley parser runs in parallel in default

・(Almost) the same interface to Stanford CoreNLP
・Customizable with Java properties file or command line; callable in Java

・Including CoreNLP itself in default (can be used transparently)
・Easy to extend: New pipeline component (annotator) can
 be added by writing a Scala/Java wrapper to the software

Tokenization/sentence splitting
CoreNLP

POS tagging
CoreNLP Berkeley parser

(Stanford tagger)

SyntaxNet

Dependency parsing
CoreNLP

(Stanford parser)

SyntaxNet New system

Parsing
CoreNLP

(Stanford parser)

New system

NER/SRL/Coreference …
・Each annotator wraps a system (software); annotates on Scala XML
・One can replace some component (e.g., parser) with a new system

Berkeley parser

Discussion

Scala XML object

Input: Raw text

<sentences>
 <sentence id=“s0”>
 <tokens>
 <token form=“The” pos=“DT”>
 ...
 </tokens>
 <dependencies>
 ...
 </dependencies>
 <parse>
 ...
 </parse>
 </sentence>
 ...
</sentences>

Added by parser⇒

Internal mechanism / Tips

・This design gives us more flexibility for the supportable annotators (e.g., supporting CCG parser in CoreNLP seems less obvious)
・Try Jigg! And give us feedback on Github issue!

・Jigg is inspired by CoreNLP in many aspects; the largest difference is in annotated objects (CoreMap in CoreNLP vs. Scala XML in Jigg)

Each annotator is implemented as a Scala (or Java) class:

package jigg.pipeline
import scala.xml._
class BerkeleyParserAnnotator extends SentenceAnnotator {
 val parser: CoarseToFineMaxRuleParser = ...
 override def newSentenceAnnotation(sentence: Node): Node = {
 // Use parser to get parse; add it to sentence XML (Node)
 }
 override def requires = Set(Tokenize, Ssplit)
 override def requirementsSatisfied = Set(POS, Parse)
} These fields define dependencies between annotators (as in CoreNLP)

Correctness of the pipeline is checked before annotation:
・ -annotators “berkeleyparser,corenlp[lemma]” will fail because  
 berkeleyparser requires the input is already tokenized and ssplitted
You can extend Jigg by implementing new annotator class:
・ If jigg.pipeline.MSTParserAnnotator is in the pass, this can be called  
 by -customAnnotatorClass.mst jigg.pipeline.MSTParserAnnotator

If you distribute your annotator via maven, a third person can use it by 
customizing Jigg with build.sbt (or pom.xml):
libraryDependencies ++= Seq(
 "com.github.mynlp" % "jigg" % "0.6.1",
 "com.github.mynlp" % "jigg-mstparser" % "0.1-SNAPSHOT")

