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Abstract

We present a Bayesian nonparametric prior called the hierarchical tree-structured
stick-breaking prior, which is a natural extension to the tree-structured prior of
Adams et al. (2010). The discrete measure drawn from this prior has correlations
with each other as in the hierarchical Dirichlet process, while the atoms in each
measure have also positive correlations hierarchically. Using this prior, we con-
struct an HMM in which each state is organized in a latent taxonomy on the tree,
which grows in a nonparametric fashion.

1 Introduction

In the world, many data are composed of categories that exhibit hierarchical tree structure, i.e.,
taxonomy: all categories that are descendants of another category are subtypes of the latter category,
which is a supertype of the former categories. Because we generally cannot observe these structures,
we wish to recover the latent hierarchy of categories and the members comprising each category.

Nonparametric Bayesian methods are attractive to handle the potentially infinite size of the latent
tree. People have enjoyed finding topic hierarchy [1, 2] or modeling human category learning [3]
using nonparametric priors over the tree. Tree-structured stick breaking prior [1] is an extension
to the Dirichlet process where each atom of the multinomial π drawn from this prior corresponds
to a node of the tree. An interesting property of this prior is that the probabilities of two events
x1, x2 ∼ π have correlations by a random walk behavior similar to the Dirichlet diffusion trees
[4]. Unfortunately, this prior cannot be used for models in which multiple distributions that share
a common tree structure are required, e.g., document modeling where a topic distribution for a
document is defined on a tree, which is shared across multiple documents1 or sequence modeling
like HMM, in which each state is organized in a latent tree.

We propose the hierarchical tree-structured stick-breaking prior: by using a draw from the tree-
structured stick-breaking as a base measure, we draw multiple discrete distributions on a tree, which
shares the structure with the base measure. This process is similar to the hierarchical Dirichlet
process [7], but we can exploit the tree structure to encode rich hierarchical information between
distributions as well as learning the tree structure itself. For an application, we demonstrate an
HMM on the potentially infinite tree, which recovers the latent taxonomy-like structure of hidden

1[2] can only model each topic distribution along a path on the tree. Recently some models that remove this
limitation have been proposed [5, 6]. We discuss the relationships between these models in a later section.
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states. HMMs are prevalent in many unsupervised learning tasks. In natural language processing,
Bayesian HMMs have been popular for unsupervised part-of-speech induction [8, 9], but current
systems ignore the inherent hierarchies of parts-of-speech. In contrast, our model can potentially
find, for example, a group of nouns where pronouns and proper nouns are closely on a sub-tree.

2 Tree-Structured Stick-Breaking Prior

Adams et al. extend Sethuraman’s stick-breaking construction of the Dirichlet process [10] to a
tree-structured process, which generates a distribution over tree-structured infinite partitions on a
unit interval. This process can be explained by two types of stick breakings, ν-break and ψ-break:
ν-break determines the weight for staying at a node as νε ∼ Beta(1, α), while ψ-break determines
weights for selecting a node to descend as ψε ∼ Beta(1, γ). We use subscript ε to denote a node,
which specifies the path to that node; εi is an i-th child node of ε. φ is the root node. The actual
construction of partition π = (πφ, π1, π1·1, · · · , π1·2, · · · , π2, · · · ) is as follows:

πε = νεϕε
∏
ε′≺ε

ϕε′(1− νε′), ϕεi = ψεi

i−1∏
j=1

(1− ψεj), πφ = νφ, (1)

where {ε′ : ε′ ≺ ε} is a set of ancestor nodes of ε. Note that we slightly simplify notations from the
original paper [1]. We summarize this process as π ∼ TSSB(α, γ).

What is the benefit of endowing hierarchy to the Dirichlet process in this manner? Adams et al.
emphasizes the importance of hierarchical emissions: we can define an emission distribution Gε at
node ε using that of parent node ε′ by e.g., the hierarchical Dirichlet process Gε ∼ DP(η,Gε′).
This is interesting, but an additional benefit that have not explicitly touched on [1] is that two atoms
πε1 and πε2 have positive correlations if the two nodes are located closely on a sub-tree because
each πε is determined by a succession of binary branching processes. This property becomes more
interesting when we consider generating multiple distributions on a tree. For example, consider a
topic model where each document is modeled with a tree-structured topic distribution and each node
corresponds to a topic. This model can capture correlations among topics, e.g., one document may
have larger weight on a sub-tree, which broadly covers the sports topic, while another document may
have larger weight on the sub-tree of politics. However, the tree-structured stick-breaking cannot be
used for these purposes, because each draw from this prior creates a different tree structure, so
correspondences of topics will not be preserved among documents.

3 Hierarchical Tree-Structured Stick-Breaking Prior

The problem of the previous section motivates us to endow another type of hierarchy to the tree-
structured stick-breaking, which is similar to the construction between the Dirichlet process and the
hierarchical Dirichlet process (HDP) [7]. In the following, we use superscripts with parentheses
to distinguish different distributions. Our goal is to define a set of distributions {π(1),π(2), · · · },
which share the same tree structure. For familiality, we give the model exposition with the topic
model as an application. We extend the idea to construct an HMM on a tree in section 4.

We describe the generative process of each π(k) as follows:
π ∼ TSSB(α, γ), π(k) ∼ HTSSB(a, b,π). (2)

The central component of this process is HTSSB, shorthand for the hierarchical tree-structured stick
breaking. Informally, HTSSB receives a distribution over a tree π as a prior, and then returns a
distribution over the same tree with different weights on each node, which enables applications like
a topic model in the previous section (π(k) is a topic distribution of document k).

HTSSB also constructs distribution π(k) by two types of stick-breakings: ν-break samples ν(k)ε for
the stopping decision, and ψ-break samples ψ(k)

ε for child branching. Using these variables, the
mechanism of the construction of each π(k) is the same as TSSB:

π(k)
ε = ν(k)ε ϕ(k)

ε

∏
ε′≺ε

ϕ
(k)
ε′ (1− ν(k)ε′ ), ϕ

(k)
εi = ψ

(k)
εi

i−1∏
j=1

(1− ψ(k)
εj ), π

(k)
φ = ν

(k)
φ , (3)

Figure 1 shows how π(k) is defined on a unit interval.
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Figure 1: The construction of π(k) given a prior π. Each π(k) is defined on the same tree as π,
but has a different weight on each node. Rows 1, 3 and 5 show ν-breaks while rows 2 and 4 show
ψ-breaks. A symbol below a stick (e.g., π1·1) is the probability of stopping at that node, while a
symbol inside a stick (e.g, ψ1·1 in the right part) shows the ratio of the left stick to the right stick.

ν-break and ψ-break We endow a hierarchy between νε and ν(k)ε (ψε and ψ(k)
ε ) as follows:

ν(k)ε ∼ Beta(aνε, a(1− νε)) ψ(k)
ε ∼ Beta(bψε, b(1− ψε)), (4)

which can be interpreted as a two-dimensional Dirichlet and a and b are concentrations determining
the strength of prior weights. A collapsed Gibbs sampler for this model can be constructed. We
collapse all Beta variables and replace these with the Chinese restaurant processes whose restaurants
have only two types of customers: customers selecting left sticks and customers selecting right
sticks. In the topic model, we first sample topic zji of word wi in document j from the posterior. We
then add a customer selecting the left to the restaurant on ν(k)zji , and add customers selecting the right
to the restaurants on the path to zji. If a customer creates a new table, then we also add a customer
to the corresponding restaurant on the base measure π.

Relationships to other models Recently, some authors propose the models similar to ours for
the tree-structured topic models. Although our construction is composed completely with Beta
variables, the nested Chinese restaurant franchise (nCRF) [6] describes similar process based on the
hierarchical Dirichlet processes: data at a node selects a child node with a Dirichlet process, whose
base measure is the one on the same location of the global tree that defines π. Their model can be
represented in our formalism using the connection between the stick-breaking and the hierarchical
Dirichlet process [7]. This is achieved by replacing the ψ-break of (4) with

ψ
(k)
εi ∼ Beta(a(1− νε)ϕεi, a(1− νε)(1−

∑i−1
j=1 ϕεj)). (5)

Differently from our formulation, they do not distinguish between the ν-break and ψ-breaks at a
node by assigning one child to the stop choice on every nodes. Note that this construction loses a
hyper-parameter b in (4). More rigorous theoretical comparison between models is interesting but
is beyond the scope of this paper. Another related model is the nested hierarchical Dirichlet process
[5], which is almost the same as nCRF, but it ignores hierarchies between stop decisions (ν-breaks
in our case) as in nCRF and ours.

4 HMM on a Tree

We now construct the HMM on a tree using the presented hierarchical prior. In the model, each
node corresponds to a latent state that is organized in a tree-structure to represent subtype-supertype
relations between induced categories in an unsupervised fashion.

Our fundamental assumption is: two nodes close to each other (e.g., two children of a node) will
have similar transition distributions. In the domain of language modeling where each state (node)
corresponds to a word category (part-of-speech) and the transition distribution corresponds to the
syntactic role of that category, this means that two categories close to each other have common syn-
tactic properties, but also have some variations. For example, singular nouns and plural nouns both
tend to precede verb categories, while only singular nouns tend to precede 3rd person present verbs.
Cohen and Smith [11] encode these covariance information on manually-defined part-of-speech tags
for the grammar induction problem with the shared logistic-normal priors. Our motivation is differ-
ent. We are interested in finding the tree structure of word categories in a data-driven manner, not
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(b) Sampled transition matrix

Figure 2: A draw from the generative model of the HMM on a tree. See the body for details
of parameter settings. (b) is the transition matrix where an entry (i, j) represents the transition
probability from node i to j. Darker color indicates higher probability.

capturing information on manually defined tags. The induced category tree is appealing not only
from a scientific perspective, but also from an engineering one: at prediction of new data, we can
represent the confidence of a state as the depth of the predicted node. We discuss the model with a
simple HMM for a starting point, but the idea can be extended to other grammar induction problems,
e.g., state splitting of manually defined tags on a syntactic tree [12, 13].

The generative process of this HMM is described as follows:

1. Sample π ∼ TSSB(α, β) to define the global tree structure.

2. Sample the transition distribution at node ε as π(ε) ∼ HTSSB(a, b,π(ε′)) by descending
the tree in a breath-first manner (ε′ is the parent node of ε).

This model encodes the assumption discussed above. To demonstrate this, we simulate the gen-
erative process above to draw node-to-node transition distributions. We set hyper-parameters as
follows: α = 2.0, β = 0.25 to encourage vertical growth of a tree, and a = 3.0, b = 5.0 so that
the model prefers sharing of branching probabilities between parent-child distributions rather than
sharing of stopping decisions. The structure of π is determined by truncating the sticks when the
remaining length < 0.05. Figure 2(a) shows the sampled tree structure and Figure 2(b) illustrates
the transition distributions on this tree. This transition matrix captures important characteristics of
the model. When we inspect rows, a transition distribution of a node is similar to that of the parent
node, e.g., rows of 13 and 131 both have higher probabilities to 11, 12, 2, 21 and 211. This property
comes from the hierarchies of the model between distributions. We can observe another interesting
feature by inspecting columns, for example, columns of 21, 22 and 23 look similar, which indicate,
e.g., nodes which prefer transitions to 21 also tend to prefer transitions to 22 and 23. This property
comes from the mechanism of tree-structured stick-breaking of each distribution and the sharing of
internal branching probabilities.

5 Discussion

Finding latent hierarchies is fundamental for deeper understandings of the world. The presented
nonparametric priors reveal the latent tree shared across groups of data, which we believe will be
attractive for many data analysis. Although we only have touched the general properties of prior
draws in this paper, our goal is, of course, to recover the latent tree by simulating the posterior.
In general, the inference of tree structure is hard for extensive search spaces. To overcome this
problem, we are currently exploring and implementing the efficient sampling algorithms.
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